首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

2.
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes. Previously, IscA was characterized as an alternative iron-sulfur cluster assembly scaffold, as purified IscA can host transient iron-sulfur clusters. However, recent studies indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU (Ding H., Clark, R. J., and Ding, B. (2004) J. Biol. Chem. 279, 37499-37504). To further elucidate the roles of IscA in the biogenesis of iron-sulfur clusters, we reevaluate the iron binding activity of IscA under physiologically relevant conditions. The results indicate that in the presence of the thioredoxin reductase system, Escherichia coli IscA binds iron with an iron association constant of 2.0 x 10(19) M(-1) in vitro. Whereas all three components (thioredoxin 1, thioredoxin reductase and NADPH) in the thioredoxin reductase system are essential for mediating the iron binding in IscA, only catalytic amounts of thioredoxin 1 and thioredoxin reductase are required. In contrast, IscU fails to bind iron in the presence of the thioredoxin reductase system, suggesting that the iron binding in IscA is specific. Nevertheless, the thioredoxin reductase system can promote the iron-sulfur cluster assembly in IscU in the presence of the iron-loaded IscA, cysteine desulfurase (IscS), and L-cysteine, demonstrating a physiologically relevant system for the biogenesis of iron-sulfur clusters. The results provide additional evidence for the hypothesis that IscA is capable of recruiting intracellular "free" iron and delivering the iron for the iron-sulfur cluster assembly in IscU.  相似文献   

3.
IscA was proposed to be involved in the iron-sulfur cluster assembly in Acidithiobacillus ferrooxidans encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In this study, the IscA from A. ferrooxidans ATCC 23270 was successfully expressed in Escherichia coli, and purified by affinity chromatography to homogeneity. To our surprise, the purified IscA was observed to be an iron-sulfur protein according to MALDI-TOF-MS and spectra results, which was capable of recruiting intracellular iron and sulfur and hosted a stable [Fe4S4] cluster. Site-directed mutagenesis for the protein revealed that Cys35, Cys99 and Cys101 were in ligating with the [Fe4S4] cluster. The [Fe4S4] cluster could be assembled in apoIscA with Fe2+ and sulfide in vitro. The IscA from A. ferrooxidans may function as a scaffold protein for the pre-assembly of Fe-S cluster and then transfer it to target proteins in A. ferrooxidans.  相似文献   

4.
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·1020 M?1. The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters.  相似文献   

5.
Lu J  Yang J  Tan G  Ding H 《The Biochemical journal》2008,409(2):535-543
Biogenesis of iron-sulfur clusters requires a concerted delivery of iron and sulfur to target proteins. It is now clear that sulfur in iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. However, the specific iron donor for the iron-sulfur cluster assembly still remains elusive. Previous studies showed that IscA, a member of the iron-sulfur cluster assembly machinery in Escherichia coli, is a novel iron-binding protein, and that the iron-bound IscA can provide iron for the iron-sulfur cluster assembly in a proposed scaffold IscU in vitro. However, genetic studies have indicated that IscA is not essential for the cell growth of E. coli. In the present paper, we report that SufA, an IscA paralogue in E. coli, may represent the redundant activity of IscA. Although deletion of IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA in E. coli results in a severe growth phenotype in minimal medium under aerobic growth conditions. Cell growth is restored when either IscA or SufA is re-introduced into the iscA-/sufA- double mutant, demonstrating further that either IscA or SufA is sufficient for their functions in vivo. Purified SufA, like IscA, is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU in the presence of a thioredoxin reductase system which emulates the intracellular redox potential. Site-directed mutagenesis studies show that the SufA/IscA variants that lose the specific iron-binding activity fail to restore the cell growth of the iscA-/sufA- double mutant. The results suggest that SufA and IscA may constitute the redundant cellular activities to recruit intracellular iron and deliver iron for the iron-sulfur cluster assembly in E. coli.  相似文献   

6.
Wang W  Huang H  Tan G  Si F  Liu M  Landry AP  Lu J  Ding H 《The Biochemical journal》2010,432(3):429-436
IscA is a key member of the iron-sulfur cluster assembly machinery in prokaryotic and eukaryotic organisms; however, the physiological function of IscA still remains elusive. In the present paper we report the in vivo evidence demonstrating the iron-binding activity of IscA in Escherichia coli cells. Supplement of exogenous iron (1 μM) in M9 minimal medium is sufficient to maximize the iron binding in IscA expressed in E. coli cells under aerobic growth conditions. In contrast, IscU, an iron-sulfur cluster assembly scaffold protein, or CyaY, a bacterial frataxin homologue, fails to bind any iron in E. coli cells under the same experimental conditions. Interestingly, the strong iron-binding activity of IscA is greatly diminished in E. coli cells under anaerobic growth conditions. Additional studies reveal that oxygen in medium promotes the iron binding in IscA, and that the iron binding in IscA in turn prevents formation of biologically inaccessible ferric hydroxide under aerobic conditions. Consistent with the differential iron-binding activity of IscA under aerobic and anaerobic conditions, we find that IscA and its paralogue SufA are essential for the iron-sulfur cluster assembly in E. coli cells under aerobic growth conditions, but not under anaerobic growth conditions. The results provide in vivo evidence that IscA may act as an iron chaperone for the biogenesis of iron-sulfur clusters in E. coli cells under aerobic conditions.  相似文献   

7.
Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.  相似文献   

8.
In plants iron-sulfur (Fe-S) proteins are found in the plastids, mitochondria, cytosol and nucleus, where they are essential for numerous physiological and developmental processes. Recent mutant studies, mostly in Arabidopsis thaliana, have identified three pathways for the assembly of Fe-S clusters. The plastids harbor the SUF (sulfur mobilization) pathway and operate independently, whereas cluster assembly in the cytosol depends on the emerging CIA (cytosolic iron-sulfur cluster assembly) pathway and mitochondria. The latter organelles use the ISC (iron-sulfur cluster) assembly pathway. In all three pathways the assembly process can be divided into a first stage where S and Fe are combined on a scaffold protein, and a second stage in which the Fe-S cluster is transferred to a target protein. The second stage might involve different carrier proteins with specialized functions.  相似文献   

9.
A-type carrier (ATC) proteins of the Isc (iron-sulfur cluster) and Suf (sulfur mobilization) iron-sulfur ([Fe-S]) cluster biogenesis pathways are proposed to traffic preformed [Fe-S] clusters to apoprotein targets. In this study, we analyzed the roles of the ATC proteins ErpA, IscA, and SufA in the maturation of the nitrate-inducible, multisubunit anaerobic respiratory enzymes formate dehydrogenase N (Fdh-N) and nitrate reductase (Nar). Mutants lacking SufA had enhanced activities of both enzymes. While both Fdh-N and Nar activities were strongly reduced in an iscA mutant, both enzymes were inactive in an erpA mutant and in a mutant unable to synthesize the [Fe-S] cluster scaffold protein IscU. It could be shown for both Fdh-N and Nar that loss of enzyme activity correlated with absence of the [Fe-S] cluster-containing small subunit. Moreover, a slowly migrating form of the catalytic subunit FdnG of Fdh-N was observed, consistent with impeded twin arginine translocation (TAT)-dependent transport. The highly related Fdh-O enzyme was also inactive in the erpA mutant. Although the Nar enzyme has its catalytic subunit NarG localized in the cytoplasm, it also exhibited aberrant migration in an erpA iscA mutant, suggesting that these modular enzymes lack catalytic integrity due to impaired cofactor biosynthesis. Cross-complementation experiments demonstrated that multicopy IscA could partially compensate for lack of ErpA with respect to Fdh-N activity but not Nar activity. These findings suggest that ErpA and IscA have overlapping roles in assembly of these anaerobic respiratory enzymes but demonstrate that ErpA is essential for the production of active enzymes.  相似文献   

10.
IscU/Isu and IscA/Isa (and related NifU and SufA proteins) have been proposed to serve as molecular scaffolds for preassembly of [FeS] clusters to be used in the biogenesis of iron-sulfur proteins. In vitro studies demonstrating transfer of preformed scaffold-[FeS] complexes to apoprotein acceptors have provided experimental support for this hypothesis, but investigations to date have yielded only single-cluster transfer events. We describe an in vitro assay system that allows for real-time monitoring of [FeS] cluster formation using circular dichroism spectroscopy and use this to investigate de novo [FeS] cluster formation and transfer from Escherichia coli IscU and IscA to apo-ferredoxin. Both IscU and IscA were found to be capable of multiple cycles of [2Fe2S] cluster formation and transfer suggesting that these scaffold proteins are capable of acting "catalytically." Kinetic studies further showed that cluster transfer exhibits Michaelis-Menten behavior indicative of complex formation of holo-IscU and holo-IscA with apoferredoxin and consistent with a direct [FeS] cluster transfer mechanism. Analysis of the dependence of the rate of cluster transfer, however, revealed enhanced efficiency at low ratios of scaffold to acceptor protein suggesting participation of a transient, labile scaffold-[FeS] species in the transfer process.  相似文献   

11.
The biosynthesis of iron-sulfur clusters is a highly regulated process involving several proteins. Among them, so-called scaffold proteins play pivotal roles in both the assembly and delivery of iron-sulfur clusters. Here, we report the identification of two chloroplast-localized NifU-like proteins, AtCnfU-V and AtCnfU-IVb, from Arabidopsis (Arabidopsis thaliana) with high sequence similarity to a cyanobacterial NifU-like protein that was proposed to serve as a molecular scaffold. AtCnfU-V is constitutively expressed in several tissues of Arabidopsis, whereas the expression of AtCnfU-IVb is prominent in the aerial parts. Mutant Arabidopsis lacking AtCnfU-V exhibited a dwarf phenotype with faint pale-green leaves and had drastically impaired photosystem I accumulation. Chloroplasts in the mutants also showed a decrease in both the amount of ferredoxin, a major electron carrier of the stroma that contains a [2Fe-2S] cluster, and in the in vitro activity of iron-sulfur cluster insertion into apo-ferredoxin. When expressed in Escherichia coli cells, AtCnfU-V formed a homodimer carrying a [2Fe-2S]-like cluster, and this cluster could be transferred to apo-ferredoxin in vitro to form holo-ferredoxin. We propose that AtCnfU has an important function as a molecular scaffold for iron-sulfur cluster biosynthesis in chloroplasts and thereby is required for biogenesis of ferredoxin and photosystem I.  相似文献   

12.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   

13.
IscA homologues are involved in iron-sulfur cluster biosynthesis. In the non-nitrogen-fixing cyanobacterium Synechocystis PCC 6803, there are two IscA homologues, SLR1417 and SLR1565 (designated IscA1 and IscA2), of which only IscA2 exists as a protein complex with the HEAT-repeat-containing protein, SLR1098 (IaiH). We observed that the absorption spectrum of the recombinant IscA2/IaiH complex resembles that of IscA2 alone, although it is sharper. In the presence of dithiothreitol, the [2Fe-2S] cluster of IscA2 alone, but not of the IscA2/IaiH complex, became reductively labile upon the addition of sodium dithionite. This implies that the IscA2 moiety of the [2Fe-2S] cluster is stabilized by the presence of IaiH. The [2Fe-2S] cluster of the IscA2/IaiH complex was destabilized by sodium dithionite in the absence of dithiothreitol, suggesting that the in vivo stability of the iron-sulfur cluster in the IscA2/IaiH complex is influenced by the redox state of cellular thiols. When any one of three conserved cysteine residues in IscA2, potential ligands for the [2Fe-2S] cluster, was replaced with serine, the amount of assembled [2Fe-2S] cluster and protein complex was significantly reduced in E. coli cells. The cysteine mutated IscA2/IaiH complexes that were present all contained a [2Fe-2S]-like cluster suggesting that the assembly of a stable iron-sulfur cluster bound to IscA2 is required for efficient and stable complex formation. Truncated IaiH proteins were analyzed using the yeast two-hybrid assay to identify the essential domain of IaiH that interacts physically with IscA2. At least 2 of the 5 N-terminal HEAT repeats of IaiH were found to be required for interaction with IscA2.  相似文献   

14.
Increasing evidence suggests that IscS, a cysteine desulfurase, provides sulfur for assembly of transient iron-sulfur clusters in IscU. IscU appears to act as a scaffold and eventually transfers the assembled clusters to target proteins. However, the iron donor for the iron-sulfur cluster assembly largely remains elusive. Here we find that Escherichia coli IscU fails to assemble iron-sulfur clusters when the accessible "free" iron in solution is limited by an iron chelator sodium citrate. Remarkably, IscA, an iron-sulfur cluster assembly protein with an iron association constant of 3.0 x 10(19) m(-1), is able to overcome the iron limitation due to sodium citrate and deliver iron for the IscS-mediated iron-sulfur cluster assembly in IscU. Substitution of the invariant cysteine residues Cys-99 or Cys-101 in IscA with serine completely abolishes the iron binding activity of the protein. The IscA mutants that fail to bind iron are unable to mediate iron delivery for the iron-sulfur cluster assembly in IscU under the limited accessible "free" iron conditions. The results suggest that IscA is capable of recruiting intracellular iron and providing iron for the iron-sulfur cluster assembly in IscU in cells in which the accessible "free" iron content is probably restricted.  相似文献   

15.
IscA belongs to an ancient family of proteins responsible for iron-sulfur cluster assembly in essential metabolic pathways preserved throughout evolution. We report here the 2.3 A resolution crystal structure of Escherichia coli IscA, a novel fold in which mixed beta-sheets form a compact alpha-beta sandwich domain. In contrast to the highly mobile secondary structural elements within the bacterial Fe-S scaffold protein IscU, a protein which is thought to have a similar function, the great majority of the amino acids that are conserved in IscA homologues are located in elements that constitute a well-ordered fold. However, the 10-residue C-terminal tail segment that contains two invariant cysteines critical for the Fe-S-binding function of a cyanobacterial (Synechocystis PCC) IscA homologue is not ordered in our structure. In addition, the crystal packing reveals a helical assembly that is constructed from two possible tetrameric oligomers of IscA.  相似文献   

16.
Léon S  Touraine B  Briat JF  Lobréaux S 《FEBS letters》2005,579(9):1930-1934
Isu are scaffold proteins involved in iron-sulfur cluster biogenesis and playing a key role in yeast mitochondria and Escherichia coli. In this work, we have characterized the Arabidopsis thaliana Isu gene family. AtIsu1,2,3 genes encode polypeptides closely related to their bacterial and eukaryotic counterparts. AtIsu expression in a Saccharomyces cerevisiae Deltaisu1Deltanfu1 thermosensitive mutant led to the growth restoration of this strain at 37 degrees C. Using Isu-GFP fusions expressed in leaf protoplasts and immunodetection in organelle extracts, we have shown that Arabidopsis Isu proteins are located only into mitochondria, supporting the existence of an Isu-independent Fe-S assembly machinery in plant plastids.  相似文献   

17.
铁硫簇在细胞的生物学过程中起着重要的作用,可参与电子传递、代谢控制和基因调节等过程。研究显示铁硫簇具有多样性,它的合成依赖于ISC和SUF系统,固氮酶中还需要NIF系统的参与。ISC系统由iscSUA-hscBA-fdx基因串编码,合成的是一类“管家”蛋白,适于在正常条件下表达。SUF系统由基因串sufABCDSE编码,常在恶劣环境如氧化应激和铁饥饿条件下表达。NIF系统由nifSU基因编码,适于固氮酶(厌氧条件下起作用)铁硫簇的合成。  相似文献   

18.
In Escherichia coli, sulfur in iron-sulfur clusters is primarily derived from l-cysteine via the cysteine desulfurase IscS. However, the iron donor for iron-sulfur cluster assembly remains elusive. Previous studies have shown that, among the iron-sulfur cluster assembly proteins in E. coli, IscA has a unique and strong iron-binding activity and that the iron-bound IscA can efficiently provide iron for iron-sulfur cluster assembly in proteins in vitro, indicating that IscA may act as an iron chaperone for iron-sulfur cluster biogenesis. Here we report that deletion of IscA and its paralog SufA in E. coli cells results in the accumulation of a red-colored cysteine desulfurase IscS under aerobic growth conditions. Depletion of intracellular iron using a membrane-permeable iron chelator, 2,2′-dipyridyl, also leads to the accumulation of red IscS in wild-type E. coli cells, suggesting that the deletion of IscA/SufA may be emulated by depletion of intracellular iron. Purified red IscS has an absorption peak at 528 nm in addition to the peak at 395 nm of pyridoxal 5′-phosphate. When red IscS is oxidized by hydrogen peroxide, the peak at 528 nm is shifted to 510 nm, which is similar to that of alanine-quinonoid intermediate in cysteine desulfurases. Indeed, red IscS can also be produced in vitro by incubating wild-type IscS with excess l-alanine and sulfide. The results led us to propose that deletion of IscA/SufA may disrupt the iron delivery for iron-sulfur cluster biogenesis, therefore impeding sulfur delivery by IscS, and result in the accumulation of red IscS in E. coli cells.  相似文献   

19.
IscA/SufA proteins belong to complex protein machineries which are involved in iron-sulfur cluster biosynthesis. They are defined as scaffold proteins from which preassembled clusters are transferred to target apoproteins. The experiments described here demonstrate that the transfer reaction proceeds in two observable steps: a first fast one leading to a protein–protein complex between the cluster donor (SufA/IscA) and the acceptor (biotin synthase), and a slow one consisting of cluster transfer leading to the apoform of the scaffold protein and the holoform of the target protein. Mutation of cysteines in the acceptor protein specifically inhibits the second step of the reaction, showing that these cysteines are involved in the cluster transfer mechanism but not in complex formation. No cluster transfer from IscA to IscU, another scaffold of the isc operon, could be observed, whereas IscU was shown to be an efficient cluster source for cluster assembly in IscA. Implications of these results are discussed.Abbreviations AdoMet S-adenosylmethionine - APS adenosine-5-phosphosulfate - BioB biotin synthase - DAF deazaflavin - DTB dethiobiotin - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - hisIscU/A six histidine residues at the N-terminus of IscU/A - PCR polymerase chain reaction - PLP pyridoxal 5-phosphate - SufAhis six histidine residues at the C-terminus of SufA  相似文献   

20.
The assembly of iron-sulfur (Fe-S) clusters involves several pathways and in prokaryotes the mobilization of the sulfur (SUF) system is paramount for Fe-S biogenesis and repair during oxidative stress. The prokaryotic SUF system consists of six proteins: SufC is an ABC/ATPase that forms a complex with SufB and SufD, SufA acts as a scaffold protein, and SufE and SufS are involved in sulfur mobilization from cysteine. Despite the importance of Fe-S proteins in higher plant plastids, little is known regarding plastidic Fe-S cluster assembly. We have recently shown that Arabidopsis harbors an evolutionary conserved plastidic SufC protein (AtNAP7) capable of hydrolyzing ATP and interacting with the SufD homolog AtNAP6. Based on this and the prokaryotic SUF system we speculated that a SufB-like protein may exist in plastids. Here we demonstrate that the Arabidopsis plastid-localized SufB homolog AtNAP1 can complement SufB deficiency in Escherichia coli during oxidative stress. Furthermore, we demonstrate that AtNAP1 can interact with AtNAP7 inside living chloroplasts suggesting the presence of a plastidic AtNAP1.AtNAP6.AtNAP7 complex and remarkable evolutionary conservation of the SUF system. However, in contrast to prokaryotic SufB proteins with no associated ATPase activity we show that AtNAP1 is an iron-stimulated ATPase and that AtNAP1 is capable of forming homodimers. Our results suggest that AtNAP1 represents an atypical plastidic SufB-like protein important for Fe-S cluster assembly and for regulating iron homeostasis in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号