首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracerebroventricular (icv) injection of neurotensin (NT) (2 micrograms/rat) suppressed prolactin (PRL) release induced by L-5-hydroxytryptophan (1 mg/100 g body wt, iv), prostaglandin E2(1 microgram/rat, icv), and FK33-824 (10 micrograms/100 g body wt, iv), a Met5-enkephalin analog, in urethane-anesthetized or conscious rats. In contrast, NT did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt, iv), a peripheral dopamine antagonist. In in vitro experiments, NT (10(-5) M) stimulated dopamine release from perifused rat hypothalamic fragments. These results suggest that central NT inhibits PRL secretion by stimulating dopamine release from the hypothalamus into hypophysical portal blood in the rat.  相似文献   

2.
Intracerebroventricular (icv) injection of L-3,4-dihydroxyphenylserine (L-DOPS) (50 and 250 micrograms/rat) raised in a dose-related manner both plasma prolactin (PRL) and CSF norepinephrine (NE) in urethane-anesthetized male rats. Intravenous (iv) injection of larger doses of L-DOPS (5 and 10 mg/100 g BW) slightly but significantly increased plasma PRL and CSF NE. L-DOPS injection (50 micrograms/rat, icv or 5 mg/100 g BW, iv) also raised plasma PRL in conscious rats. There was a good correlation (r = 0.74) between CSF NE and peak plasma PRL in the anesthetized animals. Propranolol (100 micrograms/100 g BW, iv) inhibited plasma PRL responses to L-DOPS (50 micrograms/rat, icv) and NE injection (1 microgram/rat, icv) raised plasma PRL in anesthetized animals. These findings indicate that L-DOPS stimulates PRL secretion via central noradrenergic mechanisms in the rat.  相似文献   

3.
Synthetic gastrin releasing peptide (GRP) injected intraventricularly (1 microgram/rat), but not intravenously, suppressed rat prolactin (PRL) release induced by a Met-enkephalin analog, FK33-824 (10 micrograms/100 g body wt., iv). GRP also blunted PRL release induced by a dopamine antagonist, domperidone (1 microgram/100 g body wt., iv). In contrast, GRP did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt., iv). GRP (10(-5) M) had no effect on PRL release from superfused pituitary cells in vitro. These results suggest that GRP inhibits PRL secretion in the rat by acting through the brain to stimulate the dopaminergic mechanism.  相似文献   

4.
Y Kabayama  Y Kato  K Tojo  A Shimatsu  H Ohta  H Imura 《Life sciences》1985,36(13):1287-1294
Intracerebroventricular (icv) injection of DN1417 (0.3, 3 and 30 nmol/rat), a TRH analog, resulted in a dose-related increase in plasma glucose, epinephrine and norepinephrine levels in conscious male rats. The effects of DN1417 were more potent and longer-lasting than those of TRH on a molar basis. Intravenous injection of DN1417 (30 nmol/rat) did not change plasma glucose, epinephrine and norepinephrine levels. Pretreatment with hexamethonium (1.5 mg/100 g body wt, iv, 2 min before) inhibited plasma glucose, epinephrine and norepinephrine responses to DN1417 (3 nmol/rat, icv). DN1417 did not change plasma glucose, epinephrine and norepinephrine levels in rats after total adrenalectomy. In the animals pretreated with cysteamine (30 mg/100 g body wt, sc, 4 h before), basal plasma glucose, epinephrine and norepinephrine levels were raised, and exaggerated responses of plasma glucose, epinephrine and norepinephrine to DN1417 (3 nmol/rat, icv) were obtained. These results indicate that DN1417 has a potent and long-lasting effect in the central nervous system in stimulating the secretion of catecholamines through the autonomic nervous system, which is associated with an elevation of plasma glucose and that endogenous hypothalamic somatostatin may inhibit the action of DN1417.  相似文献   

5.
The effect on prolactin (PRL) secretion of acute administration of new octapeptide analogs of somatostatin (SS) with an enhanced and prolonged growth hormone inhibitory activity was investigated in rats under various pretreatment conditions with estrogen and antidopaminergic drugs. Analog D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), at a dose of 5 micrograms/100 g body wt, did not decrease basal PRL levels in thiopental-anesthetized female rats, untreated or treated with estrogen benzoate (EB) (8 micrograms/rat) for 5 days. When haloperidol was used to elevate PRL level, a single injection of RC-121 inhibited PRL release in EB-pretreated female rats or untreated female and male rats. Analog D-Phe-Cys-Trp-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), which has a potency similar to RC-121 in the tests on inhibition of GH, in a dose of 0.2 microgram/100 g body wt, did not lower the elevated PRL level induced by alpha-methyl-p-tyrosine and/or pretreatment with EB (100 micrograms/rat, 3 and 6 days before) in pentobarbital-anesthetized male rats. However, both analogs RC-121 and RC-160, in doses of 0.2 microgram/100 g body wt, decreased the PRL levels elevated by prolonged pretreatment with EB (100 micrograms/rat, twice a week for 3 weeks) in male rats. These results indicate that acute administration of these SS analogs can induce a prolonged inhibition of PRL release when PRL is acutely elevated by haloperidol or chronically elevated by 3 weeks of estrogen administration. Future additional studies are required to investigate the effects of chronic administration of these SS analogs on PRL levels.  相似文献   

6.
Intravenous (iv) injection of FK33-824 [( D-Ala2, MePhe4, Met-(O)5-ol]-enkephalin, 8 and 16 nmole/100 g body wt), a potent Met5-enkephalin analog, and domperidone (1.2, 2.4, and 24 nmole/100 g body wt), a dopamine antagonist, resulted in a dose-related increase in plasma prolactin (PRL) levels in urethane-anesthetized male rats. PRL release induced by FK33-824 (16 nmole/100 g body wt, iv) was inhibited by intraventricular (icv) injection of TRH (0.6 nmole/rat). DN-1417 (gamma-butyrolactone-gamma-carbonyl-histidyl-prolinamide citrate, 0.6 nmole/rat, icv), a TRH analog, also blunted PRL release induced by FK33-824. PRL release induced by a smaller dose of domperidone (1.2 nmole/100 g body wt, iv) was blunted by TRH and DN-1417, whereas both peptides failed to suppress elevated PRL levels induced by larger doses of domperidone. These results suggest that TRH not only stimulates PRL secretion by acting directly at the pituitary, but has an inhibitory action on PRL release through activation of the central dopaminergic mechanism.  相似文献   

7.
The possible role of hypothalamic peptide histidine isoleucine (PHI) in prolactin (PRL) secretion induced by serotoninergic mechanisms was investigated in male rats using a passive immunization technique. Intracerebroventricular injection of serotonin (5HT, 10 micrograms/rat) raised plasma PRL levels both in urethane-anesthetized rats and in conscious rats pretreated with normal rabbit serum (0.5 ml/rat, iv, 30 min before). Plasma PRL responses to 5HT were blunted in these animals when they were pretreated with rabbit antiserum specific for PHI (0.5 ml/rat, iv, 30 min before) (mean +/- SE peak plasma PRL: anesthetized rats 271.3 +/- 38.3 ng/ml vs 150.0 +/- 12.6 ng/ml, p less than 0.01, conscious rats 54.3 +/- 6.8 ng/ml vs 30.7 +/- 4.1 ng/ml, p less than 0.025). These results suggest that hypothalamic PHI is involved, at least in part, in PRL secretion induced by central serotoninergic stimulation in the rat.  相似文献   

8.
A Met5-enkephalin analog, FK33-824 (5, 10 and 20 micrograms/100 g body wt, iv) caused a dose-related increase in plasma growth hormone (GH) in urethane-anesthetized male rats. Pretreatment with cysteamine (30 mg/100 g body wt, sc), a depletor of hypothalamic somatostatin, increased the plasma GH response to FK33-824 (10 micrograms/100 g body wt, iv). Antiserum specific for rat GH-releasing factor (GRF) (0.5 ml/rat, iv) blunted GH release induced by FK33-824 (10 micrograms/100 g body wt, iv) in rats with or without cysteamine pretreatment. These results suggest that GH secretion induced by the opioid peptide is mediated, at least in part, by hypothalamic GRF in the rat.  相似文献   

9.
The effect of L-threo-3,4-dihydroxyphenylserine (L-DOPS) on norepinephrine (NE) levels in plasma and CSF was examined in urethane-anesthetized rats. Intravenous injection of L-DOPS (0.5, 1, and 10 mg/100 g body wt) raised plasma NE levels in a dose-related manner whereas CSF NE levels were significantly increased only by the largest dose of L-DOPS. Intracerebroventricular injection of L-DOPS (50 and 250 micrograms/rat) dose-relatedly raised CSF NE levels whereas plasma NE levels were slightly increased by a larger dose of L-DOPS. These findings may indicate that L-DOPS stimulates central noradrenergic mechanisms in the rat although a large dose of L-DOPS is required for peripheral administration.  相似文献   

10.
We studied the effects and mode of action of epinephrine on the oxidative phosphorylation of rat liver mitochondria. With either succinate or beta-hydroxybutyrate as substrate, i.v. injection of 1.5 microgram/100 g epinephrine increased the respiratory rates by 30-40% in state 3 (with ADP), and by 20-30% in state 4 (after ADP phosphorylation), so that the respiratory control ratio (state 3/state 4) changed little. The respiratory stimulation by epinephrine was maximal 20 minutes after its injection. The action of epinephrine on mitochondria was blocked by pretreatment of the animals with the alpha 1-antagonist prazosin but not by treatment with the beta-antagonist propranolol. I. v. injection of 10 micrograms/100 g phenylephrine evoked the same mitochondrial response as epinephrine. I. v. administration of 50 micrograms/100 g dibutyryl cyclic AMP enhanced glycaemia but did not affect mitochondrial respiration. Epinephrine therefore has an alpha 1-type of action on mitochondrial oxidative phosphorylation.  相似文献   

11.
We determined the cardiovascular and neurohormonal responses to intracerebroventricular injection of leptin in conscious rabbits. Intracerebroventricular injection of leptin elicited dose-related increases in mean arterial pressure and renal sympathetic nerve activity while producing no consistent, significant increases in heart rate. Peak values of mean arterial pressure and renal sympathetic nerve activity induced by intracerebroventricular injection of 50 microgram of leptin (+17.3 +/- 1.2 mmHg and +47.9 +/- 12.0%) were obtained at 10 and 20 min after injection, respectively. Plasma catecholamine concentrations significantly increased at 60 min after intracerebroventricular injection of leptin (control vs. 60 min; epinephrine: 33 +/- 12 vs. 97 +/- 27 pg/ml, P < 0.05; norepinephrine: 298 +/- 39 vs. 503 +/- 86 pg/ml, P < 0.05). Intracerebroventricular injection of leptin also caused significant increases in plasma vasopressin and glucose levels. However, pretreatment with intravenous injection of pentolinium (5 mg/kg), a ganglion blocking agent, abolished these cardiovascular and neurohormonal responses. On the other hand, intravenous injection of the same dose of leptin (50 microgram) as used in the intracerebroventricular experiment failed to cause any cardiovascular and renal sympathetic nerve responses. These results suggest that intracerebroventricular leptin acts in the central nervous system and activates sympathoadrenal outflow, resulting in increases in arterial pressure and plasma glucose levels in conscious rabbits.  相似文献   

12.
The effect of intracerebroventricular (i.c.v.) injection of the alpha 2-adrenoceptor agonists clonidine and B-HT 920 on mean arterial pressure (MAP), heart rate (HR), and plasma concentrations of noradrenaline and adrenaline was examined in conscious unrestrained rats. The injection of 1.0 microgram clonidine significantly decreased MAP and slightly decreased HR. Plasma noradrenaline and adrenaline levels were slightly but not significantly decreased after the injection of 1 microgram clonidine. In contrast, the injection of 0.1-10.0 micrograms B-HT 920 increased MAP and decreased HR. Plasma noradrenaline and adrenaline levels were slightly increased after the injection of the 1- and 10-micrograms doses. The i.c.v. injection of the alpha 2-antagonist rauwolscine slightly but not significantly increased MAP and plasma noradrenaline and adrenaline levels. The responses to i.c.v. injection of clonidine and B-HT 920 were not changed by prior administration of rauwolscine. Neither the pressor response to B-HT 920 nor the depressor response to clonidine was abolished by rauwolscine, suggesting that neither response was mediated by alpha 2-adrenoceptors.  相似文献   

13.
The adrenal nerve of anaesthetized and vagotomized dogs was electrically stimulated (10 V pulses of 2 ms duration for 10 min) at frequencies of 1, 3, 10, and 25 Hz. There was a correlation between the frequency of stimulation and the plasma concentrations of epinephrine, norepinephrine, and dopamine in the adrenal vein, mainly after the 1st min of stimulation and the maximal concentration was reached sooner with higher frequencies of stimulation. Moreover, the relative percentage of catecholamines released in response to the electrical stimulation was not changed by the frequency of stimulation. To test the hypothesis that a local negative feedback mechanism mediated by alpha 2-adrenoceptors exists in the adrenal medulla, the effects of the systemic administration of clonidine (alpha 2-antagonist) on the concentrations of catecholamines in the adrenal vein were evaluated during the electrical stimulation of the adrenal nerve (5 V pulses of 2 ms duration for 3 min) at 3 Hz. Moreover, the effects of the systemic injections of more specific alpha 2-agonist and antagonist (oxymetazoline and idazoxan) were tested on the release of catecholamines in the adrenal vein in response to electrical stimulation of the splanchnic nerve at 1 and 3 Hz frequencies. The injection of 0.5 mg/kg of yohimbine caused a significant increase in the concentrations of epinephrine and norepinephrine in the adrenal vein induced by the electrical stimulation of the adrenal nerve and the injection of 15 micrograms/kg of clonidine had no effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. The possible mechanism of the oestrogenic inhibition of the androgen-dependent synthesis of alpha2u-globulin in rat liver was explored by a correlative study of the amounts of alpha2u-globulin, its corresponding mRNA and circulating testosterone in oestrogen-treated male rats. 2. Daily treatments of mature male rats with oestradiol-17beta (10 microgram/100g body wt.) decreased and ultimately stopped the hepatic synthesis of alpha2u-globulin as determined by both hepatic and urinary concentrations of the protein. The oestrogen-mediated decrease in the hepatic synthesis of alpha2u-globulin was correlated with a decrease in the mRNA for this protein. 3. Withdrawal of oestrogen resulted in the recovery of alpha2u-globulin synthesis and an increase in mRNA for alpha2u-globulin. 4. At higher doses of oestradiol-17beta (50 microgram/100g body wt.), synthesis of alpha2u-globulin was totally suppressed. In addition, this treatment resulted in an extended period of androgen-insensitivity during which treatment with androgens induced synthesis of neither alpha2u-globulin nor its corresponding mtrna. 5. it is concluded that the oestrogenic inhibition of alpha2u-globulin synthesis is mediated by an oestrogen-dependent decrease in the hepatic content of translatable mRNA for alpha2u-globulin.  相似文献   

15.
Intracerebroventricular (icv) injection of methyldopa induced body temperature changes in the rabbits. The dose of 100 micrograms/kg did not produce any significant change on body temperature whereas 250 micrograms/kg of the drug induced hyperthermia. Higher dose of 500 micrograms/kg produced initial hypothermia which was followed by hyperthermia. On further increase of the dose to 1 mg/kg, consistent hypothermia was evident. Prazosin, a specific post-synaptic alpha 1 adrenoceptor blocker, induced hypothermia whereas piperoxan (presynaptic alpha 2 antagonist) produced hyperthermia. The pretreatment with prazosin, blocked the hyperthermic response of methyldopa. The initial hypothermia by 500 micrograms/kg of methyldopa was also potentiated. The pretreatment with piperoxan completely blocked the hypothermia but had no effect on hyperthermic response of methyldopa. Pretreatment of rabbits with both prazosin and piperoxan completely blocked the hypothermia as well as hyperthermic response of methyldopa. Thus it appeared that both presynaptic alpha 2 and postsynaptic alpha 1 adrenoceptors are involved in central thermoregulation in rabbits.  相似文献   

16.
To clarify physiological roles of catecholaminergic systems in the control of rabbit prolactin (PRL) release, the effect of various catecholamine receptor antagonists on plasma PRL levels was examined in conscious, freely moving male rabbits. An intravenous (iv) injection of yohimbin (2.5 mg/kg body wt), an alpha 2-adrenoreceptor antagonist, but not prazosin (2 mg/kg body wt), an alpha 1-adrenergic receptor antagonist, resulted in a significant elevation of plasma PRL. Conversely, propranolol (2.5 mg/kg body wt, iv), a nonselective beta-adrenoreceptor antagonist, and metoprolol (2.6 mg/kg body wt, iv), a beta 1-adrenergic antagonist, slightly but significantly suppressed basal levels of plasma PRL. On the other hand, haloperidol (0.5 mg/kg body wt, iv), pimozide (0.3 mg/kg body wt, iv), sulpiride (5 mg/kg body wt, iv), chlorpromazine (3 mg/kg body wt, iv), and YM-09151-2 (0.2 mg/kg body wt, iv), all dopamine receptor antagonists caused a significant increase in plasma PRL. These results suggest that dopaminergic and alpha 2-adrenergic mechanisms exert a tonic inhibitory role and beta-adrenergic mechanisms, probably beta 1, a tonic stimulatory role in the regulation of PRL release in the rabbit.  相似文献   

17.
Factors affecting angiotensin II-induced hypothermia in rats   总被引:3,自引:0,他引:3  
K M Wilson  M J Fregly 《Peptides》1985,6(4):695-701
Systemic administration of angiotensin II (AII) to the rat has previously been shown to induce a dose-dependent, hypothermic response manifested by a fall in colonic temperature (CT), a decrease in heat production and an increase in tail skin temperature (TST). The factors mediating AII-induced hypothermia and their site of action were the subjects of the present investigation. To this end, intracerebroventricular administration of 1 microgram of AII induced a 0.4 degrees C reduction in CT and a 2.4 degrees C increase in TST. In contrast, SC administration of 200 micrograms angiotensin III/kg induced a slight increase in CT but had no affect on TST. Pretreatment with the AII-receptor antagonist, saralasin, at either 1 or 10 micrograms/kg, SC did not affect either the fall in CT or the increase in TST induced by administration of 200 micrograms AII/kg, SC. However, the administration of 100 micrograms saralasin/kg, SC attenuated both the fall in CT and the increase in TST induced by either 100 or 200 micrograms AII/kg. Since both the presynaptic alpha adrenoceptor agonist, clonidine, and the opioid antagonist, naloxone, modulate the pressor and dipsogenic responses to AII, their effects on AII-induced hypothermia were tested. Both clonidine (25 micrograms/kg, SC) and naloxone (1 mg/kg, IP) enhanced the fall in CT. Clonidine lengthened the duration of the increase in TST while naloxone had no effect. Pretreatment with the presynaptic adrenoceptor antagonist, yohimbine (300 micrograms/kg, SC), did not alter the hypothermic response to administration of AII. To determine whether vasodilation of the tail of the rat was mediated by AII-induced prostaglandin release, indomethacin (4 and 6 mg/kg) was administered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of gonadal steroids on gonadosomatic index (GSI; gonad wt/total body wt x 100), pituitary gonadotropin (GTH) content, and serum GTH response to [D-Ala6,Pro9-Net]-luteinizing hormone-releasing hormone (LHRH-A) were investigated throughout the seasonal reproductive cycle of the goldfish. Gonad-intact female fish were implanted i.p. for 5 days with silastic pellets containing no steroid (blank), testosterone (T; 100 micrograms/g), or estradiol (E2; 100 micrograms/g). The serum GTH response at 6 h following i.p. injection of saline or 0.1 microgram/g LHRH-A was assessed. In blank-implanted, saline-injected animals, seasonal variations in GSI, pituitary GTH content, and serum GTH levels were evident; maximal and minimal levels were noted in the spring and summer months, respectively. In blank-implanted fish, LHRH-A effectively stimulated GTH release in females undergoing gonadal recrudescence (late autumn and winter) and in sexually mature (spring) females, but not in sexually regressed (summer and early autumn) females. Implantation of T or E2 raised serum steroid levels to those found during ovulation in goldfish. Steroid treatments did not affect unstimulated serum GTH levels at any time of the year. Testosterone effectively potentiated the serum GTH response to LHRH-A during the entire reproductive cycle, whereas the positive effects of E2 were evident in sexually regressed and post-spawning females only. Both T and E2 potentiated the GTH response to LHRH-A in male fish. To examine the involvement of T aromatization in mediating its actions on induced GTH secretion, male and female fish were implanted with T or the nonaromatizable androgens 5 alpha-dihydroxytestosterone (DHT; 100 micrograms/g) and 11-keto-testosterone (11-KT; 250 micrograms/animal). Testosterone potentiated the GTH response to LHRH-A in both males and females whereas DHT and 11-KT were without effect. Furthermore, the positive action of T on induced GTH secretion was blocked by 2-day pretreatment with the aromatase inhibitor 1,4,6-androstatrien-3,17-dione (100 or 300 micrograms/g). Multiple i.p. injections of hCG (0.2 microgram/g every 3 days for 39 days), probably through stimulation of endogenous T secretion, resulted in potentiation of the GTH response to LHRH-A in mature male goldfish. These results clearly demonstrate that T, through aromatization to E2, can increase pituitary responsiveness to exogenous LHRH-A in gonad-intact male and female goldfish.  相似文献   

19.
The effect of synthetic [Asu1,7] eel calcitonin (CT) and other hormones on biliary calcium excretion was investigated in rats cannulated bile duct. Administration of CT (80 mU/100 g body weight) produced a significant increase in liver calcium and a corresponding elevation of bile calcium content. The increase in bile calcium content was also caused by administration of insulin (0.1 U/100 g), epidermal growth factor (10 micrograms/100 g), glucagon (10 micrograms/100 g), epinephrine (10 micrograms/100 g), norepinephrine (10 micrograms/100 g), 4 beta-phorbol 12-myristate-13-acetate (10 micrograms/100 g) and ATP (1.0 mg/100 g), suggesting that this increase may be a receptors-mediated response. Of these hormones and drugs, norepinephrine, a alpha-receptor mediator, clearly prevented CT effect on biliary calcium excretion. Moreover, phenylephrine, a alpha 1-receptor agonist, caused an inhibition of the CT effect, while the agonist significantly increased biliary calcium excretion. The present study clearly demonstrates that biliary calcium excretion is stimulated by various hormones which increase calcium influx into liver cells, and suggests that the CT action may be inhibited by alpha 1-adrenergic stimulation.  相似文献   

20.
This study reports on the major source of circulating norepinephrine that is known to increase, progressively, during sustained hypoglycemia induced by intravenous insulin administration. Plasma concentrations of epinephrine, norepinephrine, and dopamine were simultaneously determined for adrenal venous and aortic blood in dogs anesthetized with sodium pentobarbital. The model used allowed us to perform a functional adrenalectomy (ADRX), while continuously monitoring the adrenal medullary secretory function. Under basal conditions, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine were 0.169 +/- 0.074, 0.067 +/- 0.023, and 0.011 +/- 0.003, respectively. Plasma concentrations (ng/mL) of aortic epinephrine, norepinephrine, and dopamine were 0.132 +/- 0.047, 0.268 +/- 0.034, and 0.034 +/- 0.009. Following insulin injection (0.15 IU/kg, i.v.), the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased gradually (p less than 0.05), reaching the values of 0.918 +/- 0.200, 0.365 +/- 0.058, and 0.034 +/- 0.007 30 min after insulin administration. Similarly, aortic epinephrine, norepinephrine, and dopamine concentrations (ng/mL) increased significantly (p less than 0.05) to 0.702 +/- 0.144, 0.526 +/- 0.093, and 0.066 +/- 0.024. The aortic glucose concentration (mg/dL) was diminished from 81.8 +/- 4.1 to 36.9 +/- 3.4 (p less than 0.01). After taking the blood sample at 30 min following insulin administration, ADRX was immediately performed. Five minutes after the onset of ADRX, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased further to 1.707 +/- 0.374 (p less than 0.05), 0.668 +/- 0.139 (p less than 0.05), and 0.052 +/- 0.017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号