共查询到20条相似文献,搜索用时 15 毫秒
1.
通过化学分析和酶水解试验,研究了不同的白腐菌对毛白杨的预处理效果及不同组分的降解对酶水解的影响。毛白杨木片经6种白腐菌预处理30d后,各组分都发生了降解,其中半纤维素的损失最为显著,Trametes ochracea C6888引起半纤维素降解率高达47.19%,其次是纤维素和酸不溶木素的降解。在后续酶水解过程中,6种白腐菌处理后的样品显示出不同的水解模式,菌株Trametes ochracea C6888、T. pubescens C7571和T. versicolor C6915预处理效果最为显著,还原糖得率在整个酶水解过程中一直高于对照,其中T. ochracea C6888在水解96h后还原糖得率达到15.93%,比未处理样品提高了25%。分析酸不溶木素降解率及半纤维素降解率与还原糖得率的关系发现,不同菌株在作用同一种基质时,预处理效果差异显著,木质素和半纤维素的脱除都会影响木质纤维素的酶水解。 相似文献
2.
Rajeev Kumar Fan Hu Poulomi Sannigrahi Seokwon Jung Arthur J. Ragauskas Charles E. Wyman 《Biotechnology and bioengineering》2013,110(3):737-753
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc. 相似文献
3.
Tong‐Qi Yuan Wei Wang Li‐Ming Zhang Feng Xu Run‐Cang Sun 《Biotechnology and bioengineering》2013,110(3):729-736
Although the effects of cellulose crystallinity and lignin content as two major structural features on enzymatic hydrolysis have been extensively studied, debates regarding their effects still exist. In this study, reconstitution of cellulose and lignin after 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]) pretreatment was proposed as a new method to study their effects on enzymatic digestibility. Different mechanisms of lignin content for reduction of cellulose hydrolysis were found between the proposed method and the traditional method (mixing of cellulose and lignin). The results indicated that a slight change of the crystallinity of the reconstituted materials may play a minor role in the change of enzyme efficiency. In addition, the present study suggested that the lignin content does not significantly affect the digestibility of cellulose, whereas the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase plays an important role when an ionic liquid pretreatment of biomass was conducted. Biotechnol. Bioeng. 2013; 110: 729–736. © 2012 Wiley Periodicals, Inc. 相似文献
4.
Keiju Okano Takeshi Nakamura Yuji Kamiya Susumu Ikegami 《Bioscience, biotechnology, and biochemistry》2013,77(3):805-807
Cultured crown gall cells of Catharanthus roseus Don (Vinca rosea L.) was found to contain brassinosteroids. These were identified as brassinolide and castasterone by GC/MS. This is the first conclusive identification of endogenous brassinosteroids in cultured cells. 相似文献
5.
6.
A recombinant Trichoderma reesei cellulase was used for the ultrasound‐mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4–11.8 W cm?2 sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis‐Menten kinetics. The Michaelis‐Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm?2. Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm?2 power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1448–1457, 2013 相似文献
7.
Sirisha Pamidipati 《Biocatalysis and Biotransformation》2019,37(4):261-267
Microbial degradation of lignocellulosic biomass is primarily affected by the composition and structure of biomass, as well as enzyme activities that are influenced by the presence of in-process degradation products. This study focuses on the latter, and demonstrates that cellulase activity of Neurospora discreta is stimulated in the presence of in-process soluble lignin degradation products. Two types of biomass - cocopeat and sugarcane bagasse, with contrasting lignin content and cellulose structure were tested at two biomass loadings each. At the higher biomass loading, cocopeat showed the highest amount of hydrolyzed cellulose and cellulase activity, despite its low cellulose content and recalcitrant cellulose structure. A strong positive correlation was revealed between the amount of in-process degraded lignin and cellulase activity, indicating a stimulatory effect on cellulase, which contradicts most previous literature. Furthermore, the causal relationship between the amount of degraded lignin and cellulase activity was established in a model system of commercial cellulase and standard soluble lignin. This work could pave the way for using biomass loading as a process lever to enhance cellulose hydrolysis in microbial conversion of lignocellulosic biomass. 相似文献
8.
《Critical reviews in biotechnology》2013,33(2):115-122
AbstractThe main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites. 相似文献
9.
Xiaoyu Li Wenjuan Chen Yang Zhao Yan Xiang Haiyang Jiang Suwen Zhu Beijiu Cheng 《Genetics and molecular biology》2013,36(4):540-546
Lignin is a major cell wall component of vascular plants that provides mechanical strength and hydrophobicity to vascular vessels. However, the presence of lignin limits the effective use of crop straw in many agroindustrial processes. Here, we generated transgenic maize plants in which the expression of a lignin biosynthetic gene encoding CCoAOMT, a key enzyme involved in the lignin biosynthesis pathway was downregulated by RNA interference (RNAi). RNAi of CCoAOMT led to significantly downregulated expression of this gene in transgenic maize compared with WT plants. These transgenic plants exhibited a 22.4% decrease in Klason lignin content and a 23.3% increase in cellulose content compared with WT plants, which may reflect compensatory regulation of lignin and cellulose deposition. We also measured the lignin monomer composition of the RNAi plants by GC-MS and determined that transgenic plants had a 57.08% higher S/G ratio than WT plants. In addition, histological staining of lignin with Wiesner reagent produced slightly more coloration in the xylem and sclerenchyma than WT plants. These results provide a foundation for breeding maize with low-lignin content and reveal novel insights about lignin regulation via genetic manipulation of CCoAOMT expression. 相似文献
10.
Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates 总被引:8,自引:0,他引:8
Recycling of cellulases should lower the overall cost of lignocellulosiic bioconversion processes. In this study, three recycling strategies were evaluated to determine their efficiencies over five successive rounds of hydrolysis. The effect of lignin on recycling was examined by comparing water-washed, steam-exploded birch (WB; 32% lignin) and WB which had been further extracted with alkali and peroxide (PB; 4% lignin). When the cellulases were recovered from the residual substrates after partial hydrolysis of both substrates, the recovered cellulase activity toward the mixture of fresh and residual substrates decreased after each recycling step. When the cellulases in the supernatants were also recycled, up to 20% more activity could be recovered. In both of these cases, the recovered activities did not correspond to the activities expected from the amount of cellulase protein recovered during recycling. The best recovery was obtained when the cellulases were recovered from both the residue and the supernatant after complete hydrolysis of the PB substrate. In this case, all of the originally added cellulase activity could be recovered for four consecutive hydrolysis rounds. However, when the same recycling strategy was carried out using the WB substrate, the recovered cellulase activity declined quickly with each recycling round. In all three of the recycling strategies, lower cellulase activities were recovered from the substrates with higher lignin contents. (c) 1995 John Wiley & Sons, Inc. 相似文献
11.
《Biocatalysis and Biotransformation》2013,31(2):184-189
AbstractIn this paper, two types of bacterial fusion protein, cutinase-CBMCel6A and cutinase-CBMCenA, were used to modify the surface of cellulose acetate fibre. The enzyme binding on cellulose acetate fibres and the hydrolysis of acetyl groups were monitored. Water absorbency and dye uptake were measured to assess the extent of enzymatic modification. The results demonstrated that cutinase-carbohydrate-binding module (CBM) has a greater effect on cellulose acetate fibres than that of cutinase. The use of non-ionic surfactant Triton X-100 could further improve enzymatic modification of cellulose acetate fibres in terms of wettability and dyeability. Scanning electron microscopy confirmed that both cutinase-CBMs could lead to the formation of carving characters on the surface of treated cellulose acetate fibres. Our studies provide a foundation for the potential application of cutinase-CBM in the surface modification of cellulose acetate fibre. 相似文献
12.
In electron microscopic observation, neither wax nor cuticle was observed on the outermost layers of callus tissues. Chemical estimation of wax in the callus surface was attempted by thin-layer chromatography of solvent extracts of callus tissues in comparison with those of barley and rice leaves. Hydrocarbons and free alcohols were detected in lyophilized callus tissues, but no wax esters or ketones were detected. Germination test indicated that germination of spores of Aspergillus oryzae was less favored on hydrophobic membranes than that of spores of Alternaria sp. and Botrytis cinerea.From these results, we inferred that the lack of cuticle and wax in the outermost layer of callus tissues facilitated spore germination and penetration, and A. oryzae, a saprophytic fungus, could also readily penetrate into callus tissues. 相似文献
13.
Effect of surfactants on cellulose hydrolysis 总被引:14,自引:0,他引:14
The effect of surfactants on the heterogeneous enzymatic hydrolysis of Sigmacell 100 cellulose and of steam-exploded wood was studied. Certain biosurfactants (sophorolipid, rhamnolipid, bacitracin) and Tween 80 increased the rate of hydrolysis of Sigmacell 100, as measured by the amount of reducing sugar produced, by as much as seven times. The hydrolysis of steam-exploded wood was increased by 67% in the presence of sophorolipid. At the same time, sophorolipid was found to decrease the amount of enzyme adsorbed onto the cellulose at equilibrium. Sophorolipid had the greatest effect on cellulose hydrolysis when it was present from the beginning of the experiment and when the enzyme/cellulose ratio was low. (c) 1993 John Wiley & Sons, Inc. 相似文献
14.
木质纤维生物质是地球上最丰富的可再生生物质资源,可为造纸、化工、纺织和生物能源等工业提供重要的原材料。木质纤维生物质主要包括木质素、纤维素和半纤维素三种生物多聚物成分。如何利用分子手段改造这些生物聚合物,提高它们的工业利用率是目前高度关注的问题。综述了近年来木质纤维多聚物在生物合成与改造方面的研究进展,展望了利用分子技术改造植物木质纤维生物质实现其高效利用的前景。 相似文献
15.
Mutations of the secondary cell wall 总被引:6,自引:0,他引:6
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis. 相似文献
16.
17.
William D. Murray 《Journal of biotechnology》1985,3(3):131-140
The nutrient requirements of the cellulolytic anaerobe Bacteroides cellulosolvens were determined, and a new synthetic medium was formulated for its growth. B. cellulosolvens showed optimum cellobiose consumption and product formation in medium containing 40 mM ammonia nitrogen, 3 mM phosphate, 1 mM sulfide, 100 μM magnesium and 45 μM iron. This microbe had an essential-vitamin requirement for biotin; while zinc, manganese and copper slightly stimulated cellobiose degradation. In the new synthetic medium B. cellulosolvens was able to degrade 30% more cellulose. 相似文献
18.
纤维素生物质水解技术是生物质资源转化的关键技术之一,在传统的酸水解和酶水解技术基础上,近年来出现了一些新型的水解技术,它们一般都具有绿色高效、对环境友好等特点;回顾并综述了纤维素生物质水解技术的最新进展,并对纤维素生物质水解技术的发展研究方向提出了设想. 相似文献
19.
以四川4个地区2种丛生竹(慈竹和硬头黄)为研究对象,对其木质素和综纤维含量进行研究.结果表明,不同地区竹种间综纤维素含量差异显著;除青神地区外,其它几个地区木质素含量差异不大.纬度对木质素积累的作用因竹种而异,对慈竹木质素含量的作用呈极明显的正效应,对硬头黄的作用则呈不明显的正效应,对综纤维含量的影响不大.竹龄影响木质素和综纤维素含量的积累,对慈竹木质素和综纤维的积累呈显著的正效应,但对硬头黄的作用却不明显.研究认为,青神、长宁和绵阳地区的硬头黄以及长宁地区的慈竹是造纸的较好原料. 相似文献
20.
四川2种丛生竹理化特性及纤维形态研究 总被引:1,自引:0,他引:1
以四川不同地区两种丛生竹—慈竹和梁山慈竹为研究对象,通过测定纤维素和木质素含量以及纤维形态,对其变异规律进行研究。结果表明,同一地区不同竹种间纤维素和木质素含量差异显著,同一竹种不同地区间纤维素和木质素含量、纤维长度、宽度和纤维长宽比因地域差异而异,且与竹龄有关。从纸浆用竹和纤维原料综合考虑,竹海地区的慈竹(纤维素含量在45%左右,木质素含量低于28%)、梁山慈竹(纤维素含量在50%以上,木质素含量低于20%)比较适合竹浆造纸。 相似文献