首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of incorporating various montmorillonite nanoclays into wheat, potato, corn, and waxy corn starch samples were examined by rheology and X-ray diffraction. The nanoclays included the hydrophilic Cloisite Na+ clay as well as the more hydrophobic Cloisite 30B, 10A, and 15A clays. Frequency sweep and creep results for wheat starch–nanoclay samples at room temperature indicated that the Cloisite Na+ samples formed more gel-like materials than the other nanoclay samples. X-ray diffraction results showed no intercalation of Cloisite Na+ clays at room temperature, suggesting that starch granules interacted only with the clay surface and not the interlayer. When the various wheat starch–nanoclay samples were heated to 95 °C, the Cloisite Na+ samples exhibited a large increase in modulus. In contrast, the more hydrophobic nanoclay samples had comparable modulus values to the neat starch sample. These results suggested that during gelatinization, the leached amylose interacted with the Cloisite Na+ interlayer, producing better reinforcement and higher modulus values. X-ray diffraction results supported this interpretation since the data showed greater intercalation of Cloisite Na+ clay in the gelatinized samples. The samples containing wheat and corn starch showed comparable elastic modulus values during gelatinization. However, the potato and waxy corn samples had modulus values that rapidly decreased at higher temperatures.  相似文献   

2.
3.
Thermoplastic corn starch (TPS) hybrids, plasticized with glycerol and reinforced with two types of clay (sodium montmorillonite and Cloisite® 30B), were prepared by melt-extrusion. Scanning electron microscopy was used to visualize extrudates morphology. The effects of clay content and of glycerol content on the physical properties of extrudates were evaluated. As determined by contact angle measurements and X-ray diffraction, the increase in glycerol content led to materials with higher hydrophilicity, and higher B-type crystallinity. Addition of clay resulted in hybrid materials with improved properties in relation to TPS alone, even after conditioning at a high relative humidity for 90 days. X-ray diffraction was also used to evaluate clay intercalation within the polymeric matrix, before and after conditioning. Soil burial biodegradation tests, carried out for TPS alone and for TPS/Cloisite 30B hybrids, and followed by weight loss measurements, revealed that biodegradation was enhanced for the hybrid materials in comparison with TPS.  相似文献   

4.
5.
Yield stress of 6% (w/w) waxy maize (WXM), cross-linked waxy maize (CLWM), and cold water swelling (CWS) starches in xanthan gum dispersions: 0%, 0.35%, 0.50%, 0.70%, and 1.0% was measured with the vane method at an apparent shear rate of 0.05 s−1. The intrinsic viscosity of the xanthan gum was determined to be: 112.3 dL/g in distilled water at 25 °C. Values of the static (σ0s) and dynamic (σ0d) yield stress of each dispersion were measured before and after breaking down its structure under continuous shear, respectively. The WXM and CWS starches exhibited synergistic behavior, whereas the CLWM starch showed antagonistic effect with xanthan gum. The difference (σ0s − σ0d) was the stress required to break the inter-particle bonding (σb). The contributions of the viscous (σv) and network (σn) components were estimated from an energy balance model. In general, values of σb of the starch–xanthan gum dispersions decreased and those of σn increased with increase in xanthan gum concentration.  相似文献   

6.
The objective of this work was to understand the physico-chemical changes induced in a wheat starch model system as a result of microwave heating. Wheat starch dispersions in water, with final solids content of 33%, 40% or 50%, were heated in a microwave oven. Following heating the samples were stored at 25 °C for up to 120 h and analyzed periodically. Microwave heated gels were significantly different from conduction heated gels in all parameters measured. The differences in properties are a reflection of the differences in the heat and mass transfer of the different modes of heating. The lack of granule swelling and the resulting soft gel are two key observations. The results of this study suggest a different mechanism of starch gelatinization compared to conduction heating. The vibrational motion and the rapid increase in temperature also result in granule rupture and formation of film polymers coating the granule surface.  相似文献   

7.
Aqueous maize starch dispersions (20%) were heated at 100 °C, in the presence of myristic, palmitic or stearic acid potassium salts as well as of sorbitol added at concentrations up to 60% (dry starch). Flow behaviour measurements at 100 °C indicated that interactions took place between the starch–fatty acid systems and sorbitol resulting in viscosity increase which was more pronounced as the sorbitol content increased. Water solubility measurements showed that a major part of sorbitol was easily extracted by excess water whereas sorption experiments revealed that the moisture uptake rate was proportional to sorbitol content of the starch systems examined. Thermomechanical studies indicated that the starch–fatty acid samples containing sorbitol up to 40% exhibited antiplasticizing behaviour. Scanning electron microscopy studies revealed that at sorbitol concentrations over 30%, free sorbitol crystals were formed on the surface of starch–fatty acid samples, whereas the percentage crystallinity as well as the crystallite size of samples were proportional to sorbitol content.  相似文献   

8.
Excised anterior mitral leaflets exhibit anisotropic, non-linear material behavior with pre-transitional stiffness ranging from 0.06 to 0.09 N/mm2 and post-transitional stiffness from 2 to 9 N/mm2. We used inverse finite element (FE) analysis to test, for the first time, whether the anterior mitral leaflet (AML), in vivo, exhibits similar non-linear behavior during isovolumic relaxation (IVR). Miniature radiopaque markers were sewn to the mitral annulus, AML, and papillary muscles in 8 sheep. Four-dimensional marker coordinates were obtained using biplane videofluoroscopic imaging during three consecutive cardiac cycles. A FE model of the AML was developed using marker coordinates at the end of isovolumic relaxation (when pressure difference across the valve is approximately zero), as the reference state. AML displacements were simulated during IVR using measured left ventricular and atrial pressures. AML elastic moduli in the radial and circumferential directions were obtained for each heartbeat by inverse FEA, minimizing the difference between simulated and measured displacements. Stress–strain curves for each beat were obtained from the FE model at incrementally increasing transmitral pressure intervals during IVR. Linear regression of 24 individual stress–strain curves (8 hearts, 3 beats each) yielded a mean (±SD) linear correlation coefficient (r2) of 0.994±0.003 for the circumferential direction and 0.995±0.003 for the radial direction. Thus, unlike isolated leaflets, the AML, in vivo, operates linearly over a physiologic range of pressures in the closed mitral valve.  相似文献   

9.
10.
This study was conducted to investigate biodenitrification efficiency with starch‐stabilized nano zero valent iron (S‐nZVI) as the additional electron donor in the presence of S2O3 in aqueous solutions, under anaerobic conditions. The main challenge for nZVI application is their tendency to agglomeration, thereby resulting in loss of reactivity that necessitates the use of stabilizers to improve their stability. In this study, S‐nZVI was synthesized by chemical reduction method with starch as a stabilizer. The synthesized nanoparticles were characterized by TEM, XRD, and FTIR. Transmission electron microscopy (TEM) image shows S‐nZVI has a size in the range of 5–27.5 nanometer. Temperature and S‐nZVI concentration were the important factors affecting nitrate removal. Biodenitrification increased at 35°C and 500 mg/L of S‐nZVI, in these conditions, biodenitrification efficiency increased from 40.45 to 78.84%. Experimental results suggested that biodenitrification increased by decreasing initial nitrate concentration. In the bioreactor biodenitrification rate was 94.07% in the presence of S‐nZVI. This study indicated that, Fe2+ could be used as the only electron donor or as the additional electron donor in the presence of S2O3 to increase denitrification efficiency.  相似文献   

11.
The formation of amylose–lipid complexes in a gelatinized potato starch matrix was investigated using potato starch and glycerol monopalmitin. These complexes exist in two forms, with the amounts of each of the forms being dependent on the temperatures and durations of the pre-treatments.

Differential scanning calorimetry (DSC) was used to analyze transition temperatures and melting enthalpies, and thereby determine the amount of the complexes in the samples. X-ray diffraction analysis was used to investigate their crystallinity.

In measurements with DSC, form I started to melt at 88.5°C, and form II at 112.9°C. When complex form II was preheated at 100 or 110°C, its melting point rose to 116.3 and 119.7°C, respectively, because of an annealing effect. The same phenomenon occurred with complex form I: when preheated at 90°C, its melting point rose to 96.8°C. The crystal formation of form II appeared to be slower when treated at 110°C than at 100°C. Their maximum melting enthalpies were reached after about 24 h and 4 h of preheating, respectively. In X-ray diffraction analyses, form II showed a V-pattern, but form I did not. This indicates that form II is more crystalline than form I. It was possible to transform form I into form II when it was heat treated, because form I was then partially or totally melted.

As a comparison, the charged substance cetyltrimethylammonium bromide created complex form I with amylose in the starch matrix, but not form II.  相似文献   


12.
Potato starch–water mixture was treated with high hydrostatic pressure (HHP) of up to 1.2 GPa, and effect of starch content (10–70% (w/w)) on HHP-gelatinization was investigated by differential scanning calorimetry (DSC). Depending on the treatment pressure and potato starch content, DSC thermograms showed decrease in enthalpy change of heat gelatinization reflecting the progress of HHP-gelatinization and increase in enthalpy change of re-gelatinization of retrograded starch. From the viewpoint of the enthalpy changes, physically modified state of HHP-treated potato starch–water mixtures was classified as follows: no change, partial gelatinization, complete gelatinization, partial gelatinization and retrogradation, and complete gelatinization and retrogradation. A state diagram of potato starch–water mixtures (treatment pressure vs. starch content) was presented.  相似文献   

13.
High amylose based nanocomposites plasticized by xylitol were prepared via twin-screw extrusion. The synergistic interaction in the xylitol-plasticized nanocomposite was studied via various characterization methods and the unique behavior of the xylitol-plasticized nanocomposite had been discussed. As revealed in the XRD and TEM results, good intercalated/exfoliated morphology had been achieved in all the nanocomposites. Furthermore, the expansion of nanoclay basal spacing was related to the xylitol/nanoclay ratio. DSC analysis clearly proved the unique crystallization process of xylitol-plasticized samples. Moreover, in the crystallization domain results, two domains sized at approximately 93.7 Å and 346 Å were found. This observation points to a two-level complex effect from two aggregate domains; one, the re-aggregation of certain number of silicate layers into domains which trap some of the amylose polymer chains, and two, the bulk drying process which combines smaller amylose crystalline domains within a larger amorphous high amylose matrix.  相似文献   

14.
Preparation of nanocomposites was carried out using microcrystalline cellulose, CaCl2, and NaH2PO4 in N,N-dimethylacetamide (DMAc) solvent by a microwave-assisted method at 150 °C. XRD results showed that the nanocomposites consisted of cellulose and hydroxyapatite (HA). The cellulose existed as a matrix in the nanocomposites. SEM and TEM analysis showed that HA nanorods were homogeneously dispersed in the cellulose matrix. The effects of the microwave heating time on the products were investigated. This method has advantages of being simple, rapid, low-cost, and environmentally friendly.  相似文献   

15.
Biodegradable polylactide (PLA) nanocomposites with aluminum trihydrate (ATH) and modified montmorillonite (MMT) were prepared via direct melt compounding using a twin-screw micro extruder. The exfoliated and intercalated structures of clay in the matrix were observed by TEM and XRD. The thermal oxidative degradation temperature and activation energy of the PLA/ATH/MMT nanocomposite determined by thermogravimetric analysis are higher than that without addition of ATH and organoclay. The incorporation of layered silicates into the PLA/ATH composite results in further stabilization throughout the degradation step. The V-0 rating (UL94 V) of the PLA nanocomposite has been achieved, and the melt dripping was reduced during combustion. Results showed that high loading of the conventional flame retardant ATH yielded brittle PLA composites; however, replacing a portion of the ATH with modified MMT in the PLA matrix improved this result.  相似文献   

16.
To evaluate the effects of exercise on aortic wall elasticity and elastic components, young male rats underwent various exercise regimes for 16 weeks. In the exercised rats, the aortic incremental elastic modulus decreased significantly when under physiological strain. The aortic content of elastin increased significantly and the calcium content of elastin decreased significantly in the exercised group. The accumulated data from the exercised and sedentary groups revealed that the elastin calcium content was related positively to the incremental elastic modulus. We concluded that physical exercise from an early age decreases the calcium deposit in aortic wall elastin and that this effect probably produced in the exercised rats a distensible aorta.  相似文献   

17.
The starch–iodine blue complex formation does not involve negatively charged iodine species like I, I, or I; rather, neutral iodine units are involved. The heat of reaction is determined to be about ?110 kJ for every mole of I-I unit in the amylose helix, which suggests that the dissociation of I2 (binding energy 149 kJ/mol) does not take place during the complex formation. Quantum mechanical (INDO CI) calculations indicate that the linear as well as nonlinear polyiodine units, I6, with interiodine distance of 3.0 Å are responsible for characteristic absorbance bands of the starch–iodine complex. Based on our previous article [(1989) J. Polym. Sci. A 27 , 4161] and the present studies we identify (C6H10O5)16.5I6 to be the polymeric unit responsible for the characteristic blue color of the complex.  相似文献   

18.
Emergence of new pathogenic viruses along with adaptive potential of RNA viruses has become a major public health concern. Therefore, it is increasingly crucial to investigate and assess the antiviral potential of nanocomposites, which is constantly advancing area of medical biology. In this study, two types of nanocomposites: Ag/NiO and Ag2O/NiO/ZnO with varying molar ratios of silver and silver oxide, respectively have been synthesised and characterised. Three metal/metal oxide (Ag/NiO) composites having different amounts of Ag nanoparticles (NPs) anchored on NiO octahedrons are AN-5 % (5 % Ag), AN-10 % (10 % Ag) and AN-15 % (15 % Ag)) and three ternary metal oxide nanocomposites (Ag2O/NiO/ZnO) i.e., A/N/Z-1, A/N/Z-2, and A/N/Z-3 with different molar ratios of silver oxide (10 %, 20 % and 30 %, respectively) were evaluated for their antiviral potential. Cellular uptake of nanocomposites was confirmed by ICP-MS. Intriguingly, molecular docking of metal oxides in the active site of nsP3 validated the binding of nanocomposites to chikungunya virus replication protein nsP3. In vitro antiviral potential of nanocomposites was tested by performing plaque reduction assay, cytopathic effect (CPE) analysis and qRT-PCR. The nanocomposites showed significant reduction in virus titre. Half-maximal inhibitory concentration (IC50) for A/N/Z-3 and AN-5 % were determined to be 2.828 and 3.277 µg/mL, respectively. CPE observation and qRT-PCR results were consistent with the data obtained from plaque reduction assay for A/N/Z-3 and AN-5 %. These results have opened new avenues for development of nanocomposites based antiviral therapies.  相似文献   

19.
A matrix made up of chitosan–SiO2–multiwall carbon nanotubes (CHIT–SiO2–MWCNTs) nanocomposite was fabricated to investigate the immobilization of creatine amidinohydrolase (CAH). CAH enzyme was covalently immobilized with the CHIT–SiO2–MWCNTs matrix using glutaraldehyde as a linker. The resulting CAH/CHIT–SiO2–MWCNTs biomatrix was characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV) taking CHIT–SiO2–MWNTs as a reference. The influence of various parameters on CAH enzyme activity within the matrix was investigated including pH, temperature, and time. The Michaelis–Menten constant and apparent activities for the CAH enzyme were calculated to be 0.58 mM and 83.16 mg/cm2, respectively; indicating CHIT–SiO2–MWCNTs nanocomposite matrix has a high affinity to immobilize CAH enzyme.  相似文献   

20.
Hydroxypropylated and oxidised potato starch (HONPS) was used together with glycerol and water to produce thermoplastic starch. The amount of glycerol was kept constant at 22 parts by weight per 100 parts of dry starch. The thermoplastic starch was converted into films/sheets using three different processing techniques; casting, compression moulding and film blowing. The last two methods represent typical thermoplastic conversion techniques requiring elevated processing temperatures. By means of size-exclusion chromatography, it was found that compression moulding and film blowing led to some degradation of high-molecular weight amylopectin as well as of high-molecular weight amylose-like molecules. The degradation was significantly less pronounced for the cast films. The morphology of the specimens was quite complex and phase separations on different levels were identified. In the cast films and, to a lesser extent, in the compression-moulded specimens, a fine network structure could be distinguished. Such a structure could however not be ascertained in the film-blown material and this is discussed in terms of the thermo-mechanical treatment of the starch materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号