首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The NDR (nuclear Dbf2-related) family of kinases is highly conserved from yeast to human, and has been classified as a subgroup of the AGC group of protein kinases based on the sequence of the catalytic domain. Like all other members of the AGC class of protein kinases, NDR kinases require the phosphorylation of conserved Ser/Thr residues for activation. Importantly, NDR family members have two unique stretches of primary sequence: an N-terminal regulatory (NTR) domain and an insert of several residues between subdomains VII and VIII of the kinase domain. The kinase domain insert functions as an auto-inhibitory sequence (AIS), while binding of the co-activator MOB (Mps-one binder) proteins to the NTR domain releases NDR kinases from inhibition of autophosphorylation. However, despite such advances in our understanding of the molecular activation mechanism(s) and physiological functions of NDR kinases in yeast and invertebrates, most biological NDR substrates still remain to be identified. Nevertheless, by showing that the centrosomal subpopulation of human NDR1/2 is required for proper centrosome duplication, the first biological role of human NDR1/2 kinases has been defined recently. How far NDR-driven centrosome overduplication could actually contribute to cellular transformation will also be discussed.  相似文献   

2.
Proteins of the Mob1/phocein family are found in all eukaryotic cells. In yeast, they are activating subunits of Dbf2-related protein kinases involved in cell cycle control. Despite the wide occurrence of these proteins, their biological functions remain poorly understood. Here we report the solution structure of the Mob1 protein from Xenopus laevis solved by heteronuclear multidimensional NMR. The structure reveals a fold constituted by a central left-handed four-helix bundle, one connecting helix, two flanking helices and a long flexible loop. The clustering of two Cys and two His residues, and zinc measurement by atomic absorption spectroscopy support the existence of a zinc ion binding site. Our NMR structure is in good agreement with the recently described X-ray structure of human Mob1-A. Chemical shift perturbations observed upon addition of a peptide encompassing the basic region of the N-terminal regulatory domain of NDR kinase were used to identify and map a specific interaction between Mob1 and this kinase. The chemical shift changes indicate that the main interaction occurs on the acidic and conserved surface of Mob1. This surface was previously hypothesized to be the interaction surface according to the X-ray structure and was identified as functionally important in yeast. Our data suggest that the NDR kinase is a functional Dbf2 homologue in animal cells and contributes to the understanding of the molecular function of Mob1 proteins.  相似文献   

3.
NDR kinases are important for growth and differentiation and require interaction with MOB proteins for activity and function. We characterized the NDR kinases and MOB activators in Neurospora crassa and identified two NDR kinases (COT1 and DBF2) and four MOB proteins (MOB1, MOB2A, MOB2B and MOB3/phocein) that form two functional NDR–MOB protein complexes. The MOB1–DBF2 complex is not only essential for septum formation in vegetative cells and during conidiation, but also functions during sexual fruiting body development and ascosporogenesis. The two MOB2-type proteins interact with both COT1 isoforms and control polar tip extension and branching by regulating COT1 activity. The conserved region directly preceding the kinase domain of COT1 is sufficient for the formation of COT1–MOB2 heterodimers, but also for kinase homodimerization. An additional N-terminal extension that is poorly conserved, but present in most fungal NDR kinases, is required for further stabilization of both types of interactions and for stimulating COT1 activity. COT1 lacking this region is degraded in a mob-2 background. We propose a specific role of MOB3/phocein during vegetative cell fusion, fruiting body development and ascosporogenesis that is unrelated to the three other MOB proteins and NDR kinase signalling.  相似文献   

4.
Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2.  相似文献   

5.
The Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography. The core of Mob1A consists of a four-helix bundle that is stabilized by a bound zinc atom. The N-terminal helix of the bundle is solvent exposed and together with adjacent secondary structure elements forms an evolutionarily conserved surface with a strong negative electrostatic potential. Several conditional mutant alleles of S. cerevisiae MOB1 target this surface and decrease its net negative charge. Interestingly, the kinases with which yeast Mob proteins interact have two conserved basic regions within their N-terminal lobe. Thus, Mob proteins may regulate their target kinases through electrostatic interactions mediated by conserved charged surfaces.  相似文献   

6.
Human NDR1 (nuclear Dbf2-related) is a widely expressed nuclear serine-threonine kinase that has been implicated in cell proliferation and/or tumor progression. Here we present molecular characterization of the human NDR2 serine-threonine kinase, which shares approximately 87% sequence identity with NDR1. NDR2 is expressed in most human tissues with the highest expression in the thymus. In contrast to NDR1, NDR2 is excluded from the nucleus and exhibits a punctate cytoplasmic distribution. The differential localization of NDR1 and NDR2 suggests that each kinase may serve distinct functions. Thus, to identify proteins that interact with NDR1 or NDR2, epitope-tagged kinases were immunoprecipitated from Jurkat T-cells. Two uncharacterized proteins that are homologous to the Saccharomyces cerevisiae kinase regulators Mob1 and Mob2 were identified. We demonstrate that NDR1 and NDR2 partially colocalize with human Mob2 in HeLa cells and confirm the NDR-Mob interactions in cell extracts. Interestingly, NDR1 and NDR2 form stable complexes with Mob2, and this association dramatically stimulates NDR1 and NDR2 catalytic activity. In summary, this work identifies a unique class of human kinase-activating subunits that may be functionally analagous to cyclins.  相似文献   

7.
The function of Tricornered (Trc), the Drosophila Ndr (Nuclear Dbf2-related) serine/threonine protein kinase, is required for the normal morphogenesis of a variety of polarized outgrowths including epidermal hairs, bristles, arista laterals, and dendrites. In yeast the Trc homolog Cbk1 needs to bind Mob2 to activate the RAM pathway. In this report, we provide genetic and biochemical data that Drosophila Trc also interacts with and is activated by Drosophila Dmob proteins. In addition, Drosophila Mob proteins appear to interact with the related Warts/Lats kinase, which functions as a tumor suppressor in flies and mammals. Interestingly, the overgrowth tumor phenotype that results from mutations in Dmob1 (mats) was only seen in genetic mosaics and not when the entire animal was mutant. We conclude that unlike in yeast, in Drosophila individual Mob proteins interact with multiple kinases and that individual NDR family kinases interact with multiple Mob proteins. We further provide evidence that Mo25, the Drosophila homolog of the RAM pathway hym1 gene does not function along with Trc.  相似文献   

8.
Nuclear Dbf2-related (NDR) protein kinases are essential components of regulatory pathways involved in cell morphogenesis, cell cycle control, and viability in eukaryotic cells. For their activity and function, these kinases require interaction with Mob proteins. However, little is known about how the Mob proteins are regulated. In Candida albicans, the cyclin-dependent kinase (CDK) Cdc28 and the NDR kinase Cbk1 are required for hyphal growth. Here we demonstrate that Mob2, the Cbk1 activator, undergoes a Cdc28-dependent differential phosphorylation on hyphal induction. Mutations in the four CDK consensus sites in Mob2 to Ala significantly impaired hyphal development. The mutant cells produced short hyphae with enlarged tips that displayed an illicit activation of cell separation. We also show that Cdc28 phosphorylation of Mob2 is essential for the maintenance of polarisome components at hyphal tips but not at bud tips during yeast growth. Thus we have found a novel signaling pathway by which Cdc28 controls Cbk1 through the regulatory phosphorylation of Mob2, which is crucial for normal hyphal development.  相似文献   

9.
The Mob proteins function as activator subunits for the Dbf2/Dbf20 family of protein kinases. Human and Xenopus Mob1 protein structures corresponding to the most conserved C-terminal core, but lacking the variable N-terminal region, have been reported and provide a framework for understanding the mechanism of Dbf2/Dbf20 regulation. Here, we report the 2.0 A X-ray crystal structure of Saccharomyces cerevisiae Mob1 containing both the conserved C-terminal core and the variable N-terminal region. Within the N-terminal region, three novel structural elements are observed; namely, an alpha-helix denoted H0, a strand-like element denoted S0 and a short beta strand denoted S-1. Helix H0 associates in an intermolecular manner with a second Mob1 molecule to form a Mob1 homodimer. Strand S0 binds to the core domain in an intramolecular manner across a putative Dbf2 binding site mapped by Mob1 temperature-sensitive alleles and NMR binding experiments. In vivo functional analysis demonstrates that Mob1 mutants that target helix H0 or its reciprocal binding site are biologically compromised. The N-terminal region of Mob1 thus contains structural elements that are functionally important.  相似文献   

10.
Nuclear Dbf2p‐related (NDR) protein kinases are important for cell differentiation and polar morphogenesis in various organisms, yet some of their functions are still elusive. Dysfunction of the Neurospora crassa NDR kinase COT1 leads to cessation of tip extension and hyperbranching. NDR kinases require the physical interaction between the kinase's N‐terminal region (NTR) and the MPS1‐binding (MOB) proteins for their activity and functions. To study the interactions between COT1 and MOB2 proteins, we mutated several conserved residues and a novel phosphorylation site within the COT1 NTR. The phenotypes of these mutants suggest that the NTR is required for COT1 functions in regulating hyphal elongation and branching, asexual conidiation and germination. Interestingly, while both MOB2A and MOB2B promote proper hyphal growth, they have distinct COT1‐dependent roles in regulation of macroconidiation. Immunoprecipitation experiments indicate physical association of COT1 with both MOB2A and MOB2B, simultaneously. Furthermore, the binding of the two MOB2 proteins to COT1 is mediated by different residues at the COT1 NTR, suggesting a hetero‐trimer is formed. Thus, although MOB2A/B may have some overlapping functions in regulating hyphal tip extension, their function is not redundant and they are both required for proper fungal development.  相似文献   

11.
MOB control: reviewing a conserved family of kinase regulators   总被引:1,自引:0,他引:1  
The family of Mps One binder (MOB) co-activator proteins is highly conserved from yeast to man. At least two different MOB proteins have been identified in every eukaryote analysed to date. Initially, yeast genetics revealed essential roles for Mob1p and Mob2p in the regulation of mitotic exit and cell morphogenesis. Studies in flies then showed that dMOB1/MATS is a core component of Hippo signalling. Loss of dMOB1 resulted in increased cell proliferation and decreased cell death, suggesting that MOB1 acts as tumour suppressor protein. Recent work focused primarily on mammalian cells has shown how hMOB1 can regulate NDR/LATS kinases, a function that can to be counteracted by hMOB2. Here we summarise and discuss our current knowledge of this emerging protein family, with emphasis on subcellular localisation, protein-protein interactions and biological functions in apoptosis, mitosis, morphogenesis, cell proliferation and centrosome duplication.  相似文献   

12.
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.  相似文献   

13.
Nuclear Dbf2-related (NDR) protein kinases are a family of AGC group kinases that are involved in the regulation of cell division and cell morphology. We describe the cloning and characterization of the human and mouse NDR2, a second mammalian isoform of NDR protein kinase. NDR1 and NDR2 share 86% amino acid identity and are highly conserved between human and mouse. However, they differ in expression pattern; mouse Ndr1 is expressed mainly in spleen, lung and thymus, whereas mouse Ndr2 shows highest expression in the gastrointestinal tract. NDR2 is potently activated in cells following treatment with the protein phosphatase 2A inhibitor okadaic acid, which also results in phosphorylation on the activation segment residue Ser-282 and the hydrophobic motif residue Thr-442. We show that Ser-282 becomes autophosphorylated in vivo, whereas Thr-442 is targeted by an upstream kinase. This phosphorylation can be mimicked by replacing the hydrophobic motif of NDR2 with a PRK2-derived sequence, resulting in a constitutively active kinase. Similar to NDR1, the autophosphorylation of NDR2 protein kinase was stimulated in vitro by S100B, an EF-hand Ca(2+)-binding protein of the S100 family, suggesting that the two isoforms are regulated by the same mechanisms. Further we show a predominant cytoplasmic localization of ectopically expressed NDR2.  相似文献   

14.
15.
The mitotic exit network (MEN) governs Cdk inactivation. In budding yeast, MEN consists of the protein phosphatase Cdc14, the ras-like GTPase Tem1, protein kinases Cdc15, Cdc5, Dbf2 and Dbf2-binding protein Mob1. Tem1, Dbf2, Cdc5 and Cdc15 have been reported to be localized at the spindle pole body (SPB). Here we report changes of the localization of Dbf2 and Mob1 during cell division. Dbf2 and Mob1 localize to the SPBs in anaphase and then moves to the bud neck, just prior to actin ring assembly, consistent with their role in cytokinesis. The neck localization, but not SPB localization, of Dbf2 was inhibited by the Bub2 spindle checkpoint. Cdc14 is the downstream target of Dbf2 in Cdk inactivation, but we found that the neck localization of DbP2 and Mob1 was dependent on the Cdc14 activity, suggesting that Dbf2 and Mob1 function in cytokinesis at the end of the mitotic signaling cascade.  相似文献   

16.
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential for cell differentiation and polarized morphogenesis. However, their functions in plant pathogenic fungi are not well understood. Here, we characterized the NDR kinase FgCot1 and its activator FgMob2 in Fusarium graminearum, a major pathogen causing Fusarium head blight (FHB) in wheat. FgCot1 and FgMob2 formed a NDR kinase–MOB protein complex. Localization assays using FgCot1-GFP or FgMob2-RFP constructs showed diverse subcellular localizations, including cytoplasm, septum, nucleus and hyphal tip. ΔFgcot1 and ΔFgmob2 exhibited serious defects in hyphal growth, polarity, fungal development and cell wall integrity as well as reduced virulence in planta. In contrast, lipid droplet accumulation was significantly increased in these two mutants. Phosphorylation of FgCot1 at two highly conserved residues (S462 and T630) as well as five new sites synergistically contributed its role in various cellular processes. In addition, non-synonymous mutations in two MAPK (mitogen-activated protein kinase) proteins, FgSte11 and FgGpmk1, partially rescued the growth defect of ΔFgmob2, indicating a functional link between the FgCot1–Mob2 complex and the FgGpmk1 signalling pathway in regulating filamentous fungal growth. These results indicated that the FgCot1–Mob2 complex is critical for polarity, fungal development, cell wall organization, lipid metabolism and virulence in F. graminearum.  相似文献   

17.
NDR, a nuclear serine/threonine kinase, belongs to the subfamily of Dbf2 kinases that is critical to the morphology and proliferation of cells. The activity of NDR kinase is modulated in a Ca(2+)/S100B-dependent manner by phosphorylation of Ser281 in the catalytic domain and Thr444 in the C-terminal regulatory domain. S100B, which is a member of the S100 subfamily of EF-hand proteins, binds to a basic/hydrophobic sequence at the junction of the N-terminal regulatory and catalytic domains (NDR(62-87)). Unlike calmodulin-dependent kinases, regulation of NDR by S100B is not associated with direct autoinhibition of the active site, but rather involves a conformational change in the catalytic domain triggered by Ca(2+)/S100B binding to the junction region. To gain further insight into the mechanism of activation of the kinase, studies have been carried out on Ca(2+)/S100B in complex with the intact N-terminal regulatory domain, NDR(1-87). Multidimensional heteronuclear NMR analysis showed that the binding mode and stoichiometry of a peptide fragment of NDR (NDR(62-87)) is the same as for the intact N-terminal regulatory domain. The solution structure of Ca(2+)/S100B and NDR(62-87) has been determined. One target molecule is found to associate with each subunit of the S100B dimer. The peptide adopts three turns of helix in the bound state, and the complex is stabilized by both hydrophobic and electrostatic interactions. These structural studies, in combination with available biochemical data, have been used to develop a model for calcium-induced activation of NDR kinase by S100B.  相似文献   

18.
19.
The Dbf2 protein kinase functions as part of the mitotic-exit network (MEN), which controls the inactivation of the Cdc28-Clb2 kinase in late mitosis [1]. The MEN includes the Tem1 GTP binding protein; the kinases Cdc15 and Cdc5; Mob1, a protein of unknown function; and the phosphatase Cdc14 [2]. Here we have used Dbf2 kinase activity to investigate the regulation and order of function of the MEN. We find that Tem1 acts at the top of the pathway, upstream of Cdc15, which in turn functions upstream of Mob1 and Dbf2. The Cdc5 Polo-like kinase impinges at least twice on the MEN since it negatively regulates the network, probably upstream of Tem1, and is also required again for Dbf2 kinase activation. Furthermore, we find that regulation of Dbf2 kinase activity and actin ring formation at the bud neck are causally linked. In metaphase-arrested cells, the MEN inhibitor Bub2 restrains both Dbf2 kinase activity [3] and actin ring formation [4]. We find that the MEN proteins that are required for Dbf2 kinase activity are also required for actin ring formation. Thus, the MEN is crucial for the regulation of cytokinesis, as well as mitotic exit.  相似文献   

20.
NDR protein kinases are involved in the regulation of cell cycle progression and morphology. NDR1/NDR2 protein kinase is activated by phosphorylation on the activation loop phosphorylation site Ser281/Ser282 and the hydrophobic motif phosphorylation site Thr444/Thr442. Autophosphorylation of NDR is responsible for phosphorylation on Ser281/Ser282, whereas Thr444/Thr442 is targeted by an upstream kinase. Here we show that MST3, a mammalian Ste20-like protein kinase, is able to phosphorylate NDR protein kinase at Thr444/Thr442. In vitro, MST3 selectively phosphorylated Thr442 of NDR2, resulting in a 10-fold stimulation of NDR activity. MOB1A (Mps one binder 1A) protein further increased the activity, leading to a fully active kinase. In vivo, Thr442 phosphorylation after okadaic acid stimulation was potently inhibited by MST3KR, a kinase-dead mutant of MST3. Knockdown of MST3 using short hairpin constructs abolished Thr442 hydrophobic motif phosphorylation of NDR in HEK293F cells. We conclude that activation of NDR is a multistep process involving phosphorylation of the hydrophobic motif site Thr444/2 by MST3, autophosphorylation of Ser281/2, and binding of MOB1A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号