首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms that mediate apoptosis resistance are attractive therapeutic targets for cancer. Protein kinase Cδ (PKCδ) is considered a pro-apoptotic factor in many cell types. In breast cancer, however, it has shown both pro-survival and pro-apoptotic effects. Here, we report for the first time that down-regulation of PKCδ per se leads to apoptosis of MDA-MB-231 cells. Inhibition of MEK1/2 by either PD98059 or U0126 suppressed the induction of apoptosis of PKCδ-depleted MDA-MB-231 cells but did not support survival of MCF-7 or MDA-MB-468 cells. Basal ERK1/2 phosphorylation was substantially higher in MDA-MB-231 cells than in the other cell lines. PKCδ depletion led to even higher ERK1/2 phosphorylation levels and also to lower expression levels of the ERK1/2 phosphatase MKP3. Depletion of MKP3 led to apoptosis and higher levels of ERK1/2 phosphorylation, suggesting that this may be a mechanism mediating the effect of PKCδ down-regulation. However, PKCδ silencing also induced increased MEK1/2 phosphorylation, indicating that PKCδ regulates ERK1/2 phosphorylation both upstream and downstream. Moreover, PKCδ silencing led to increased levels of the E3 ubiquitin ligase Nedd4, which is a potential regulator of MKP3, because down-regulation led to increased MKP3 levels. Our results highlight PKCδ as a potential target for therapy of breast cancers with high activity of the ERK1/2 pathway.  相似文献   

2.
We earlier reported that 3-pyridinecarbonitriiles with a 4-methylindolyl-5-amino group at C-4 and a phenyl group at C-5 were inhibitors of PKCθ. Keeping the group at C-4 of the pyridine core constant, we varied the water solubilizing group on the phenyl ring at C-5 and then replaced the C-5 phenyl ring with several monocyclic heteroaryl rings, including furan, thiophene and pyridine. Analog 6e with a 4-methylindol-5-ylamino group at C-4 and a 5-[(4-methylpiperazin-1-yl)methyl]-2-furyl group C-5 had an IC50 value of 4.5 nM for the inhibition of PKCθ.  相似文献   

3.
Alteration of mitochondrial mass of human 143B osteosarcoma cells upon exposure to hydrogen peroxide (H2O2) was investigated. We found that mitochondrial mass and the intracellular level of H2O2 were increased by exogenous H2O2, which was accompanied with up-regulation of functional PKCδ. To investigate the role of PKCδ in H2O2-induced increase of mitochondrial mass, we treated 143B cells with PKCδ activator, bistratene A, and PKCδ inhibitor, rottlerin, respectively. The results show that bistratene A caused an increase of mitochondrial mass and that the H2O2-induced increase of mitochondrial mass was completely suppressed by rottlerin. Furthermore, we found that activation of PKCδ by bistratene A increased the intracellular levels of H2O2 and MnSOD protein expression. By contrast, suppression of PKCδ by rottlerin decreased the intracellular levels of H2O2 and MnSOD protein expression. Moreover, we noted that MnSOD expression was highly correlated with the expression of p53, which was controlled by PKCδ. Finally, we demonstrated that PKCδ was overexpressed in skin fibroblasts of patients with MERRF syndrome. Taken together, we conclude that PKCδ is involved in the regulation of mitochondrial mass and intracellular H2O2 in human cells and may play a key role in the overproliferation of mitochondria in the affected tissues of patients with mitochondrial diseases such as MERRF syndrome.  相似文献   

4.

Background

High fat diet-induced hyperglycemia and palmitate-stimulated apoptosis was prevented by specific inhibition of protein kinase C delta (PKCδ) in β-cells. To understand the role of PKCδ in more detail the impact of changes in PKCδ activity on proliferation and survival of insulin-secreting cells was analyzed under stress-free conditions.

Methodology and Principal Findings

Using genetic and pharmacological approaches, the effect of reduced and increased PKCδ activity on proliferation, apoptosis and cell cycle regulation of insulin secreting cells was examined. Proteins were analyzed by Western blotting and by confocal laser scanning microscopy. Increased expression of wild type PKCδ (PKCδWT) significantly stimulated proliferation of INS-1E cells with concomitant reduced expression and cytosolic retraction of the cell cycle inhibitor p21Cip1/WAF1. This nuclear extrusion was mediated by PKCδ-dependent phosphorylation of p21Cip1/WAF1 at Ser146. In kinase dead PKCδ (PKCδKN) overexpressing cells and after inhibition of endogenous PKCδ activity by rottlerin or RNA interference phosphorylation of p21Cip1/WAF1 was reduced, which favored its nuclear accumulation and apoptotic cell death of INS-1E cells. Human and mouse islet cells express p21Cip1/WAF1 with strong nuclear accumulation, while in islet cells of PKCδWT transgenic mice the inhibitor resides cytosolic.

Conclusions and Significance

These observations disclose PKCδ as negative regulator of p21Cip1/WAF1, which facilitates proliferation of insulin secreting cells under stress-free conditions and suggest that additional stress-induced changes push PKCδ into its known pro-apoptotic role.  相似文献   

5.
Kewalramani G  Fink LN  Asadi F  Klip A 《PloS one》2011,6(10):e26947

Background

Macrophage-derived factors contribute to whole-body insulin resistance, partly by impinging on metabolically active tissues. As proof of principle for this interaction, conditioned medium from macrophages treated with palmitate (CM-PA) reduces insulin action and glucose uptake in muscle cells. However, the mechanism whereby CM-PA confers this negative response onto muscle cells remains unknown.

Methodology/Principal Findings

L6-GLUT4myc myoblasts were exposed for 24 h to palmitate-free conditioned medium from RAW 264.7 macrophages pre-treated with 0.5 mM palmitate for 6 h. This palmitate-free CM-PA, containing selective cytokines and chemokines, inhibited myoblast insulin-stimulated insulin receptor substrate 1 (IRS1) tyrosine phosphorylation, AS160 phosphorylation, GLUT4 translocation and glucose uptake. These effects were accompanied by a rise in c-Jun N-terminal kinase (JNK) activation, degradation of Inhibitor of κBα (IκBα), and elevated expression of proinflammatory cytokines in myoblasts. Notably, CM-PA caused IRS1 phosphorylation on Ser1101, and phosphorylation of novel PKCθ and ε. Co-incubation of myoblasts with CM-PA and the novel and conventional PKC inhibitor Gö6983 (but not with the conventional PKC inhibitor Gö6976) prevented PKCθ and ε activation, JNK phosphorylation, restored IκBα mass and reduced proinflammatory cytokine production. Gö6983 also restored insulin signalling and glucose uptake in myoblasts. Moreover, co-silencing both novel PKC θ and ε isoforms in myoblasts by RNA interference, but not their individual silencing, prevented the inflammatory response and restored insulin sensitivity to CM-PA-treated myoblasts.

Conclusions/Clinical Significance

The results suggest that the block in muscle insulin action caused by CM-PA is mediated by novel PKCθ and PKCε. This study re-establishes the participation of macrophages as a relay in the action of fatty acids on muscle cells, and further identifies PKCθ and PKCε as key elements in the inflammatory and insulin resistance responses of muscle cells to macrophage products. Furthermore, it portrays these PKC isoforms as potential targets for the treatment of fatty acid-induced, inflammation-linked insulin resistance.  相似文献   

6.
Protein kinase Cδ (PKCδ) is an essential component of the intrinsic apoptotic program. Following DNA damage, such as exposure to UV radiation, PKCδ is cleaved in a caspase-dependent manner, generating a constitutively active catalytic fragment (PKCδ-cat), which is necessary and sufficient for keratinocyte apoptosis. We found that in addition to inducing apoptosis, expression of PKCδ-cat caused a pronounced G2/M cell cycle arrest in both primary human keratinocytes and immortalized HaCaT cells. Consistent with a G2/M arrest, PKCδ-cat induced phosphorylation of Cdk1 (Tyr15), a critical event in the G2/M checkpoint. Treatment with the ATM/ATR inhibitor caffeine was unable to prevent PKCδ-cat-induced G2/M arrest, suggesting that PKCδ-cat is functioning downstream of ATM/ATR in the G2/M checkpoint. To better understand the role of PKCδ and PKCδ-cat in the cell cycle response to DNA damage, we exposed wild-type and PKCδ null mouse embryonic fibroblasts (MEFs) to UV radiation. Wild-type MEFs underwent a pronounced G2/M arrest, Cdk1 phosphorylation, and induction of apoptosis following UV exposure, whereas PKCδ null MEFs were resistant to these effects. Expression of PKCδ-green fluorescent protein, but not caspase-resistant or kinase-inactive PKCδ, was able to restore G2/M checkpoint integrity in PKCδ null MEFs. The function of PKCδ in the DNA damage-induced G2/M cell cycle checkpoint may be a critical component of its tumor suppressor function.  相似文献   

7.
In the pituitary gland, activated protein kinase C (PKC) isoforms accumulate either selectively at the cell-cell contact (α and ϵ) or at the entire plasma membrane (β1 and δ). The molecular mechanisms underlying these various subcellular locations are not known. Here, we demonstrate the existence within PKCϵ of a cell-cell contact targeting sequence (3CTS) that, upon stimulation, is capable of targeting PKCδ, chimerin-α1, and the PKCϵ C1 domain to the cell-cell contact. We show that this selective targeting of PKCϵ is lost upon overexpression of 3CTS fused to a (R-Ahx-R)4 (where Ahx is 6-aminohexanoic acid) vectorization peptide, reflecting a dominant-negative effect of the overexpressed 3CTS on targeting selectivity. 3CTS contains a putative amphipathic α-helix, a 14-3-3-binding site, and the Glu-374 amino acid, involved in targeting selectivity. We show that the integrity of the α-helix is important for translocation but that 14-3-3 is not involved in targeting selectivity. However, PKCϵ translocation is increased when PKCϵ/14-3-3 interaction is abolished, suggesting that phorbol 12-myristate 13-acetate activation may initiate two sets of PKCϵ functions, those depending on 14-3-3 and those depending on translocation to cell-cell contacts. Thus, 3CTS is involved in the modulation of translocation via its 14-3-3-binding site, in cytoplasmic desequestration via the α-helix, and in selective PKCϵ targeting at the cell-cell contact via Glu-374.Activation of cytoplasmic kinases often induces their targeting to various subcellular locations where they phosphorylate their substrates and exert their biological functions. Representative examples of proteins for which targeting involves complex and various molecular mechanisms are provided by the protein kinase C (PKC)6 family, which comprises 10 known isoforms, displaying ubiquitous, tissue- or cell type-specific expression and playing crucial roles in signal transduction (1, 2). Depending on the cell type and the stimulus, various inactive cytoplasmic PKC isoforms may, upon activation, associate with the plasma, Golgi, or nuclear membranes (35). Even within a given cell type, a particular isoform can be targeted and accumulated at various subcellular locations (6, 7), and these processes involve direct interaction with phospholipids or other proteins (8, 9).In pituitary GH3B6 cells, PKC isoforms accumulate at different subcellular locations upon phorbol 12-myristate 13-acetate (PMA) stimulation or thyrotropin-releasing hormone (TRH) receptor activation (10, 11). Activated PKCα and -ϵ accumulate selectively at cell-cell contacts, whereas PKCβ1 and -δ are detected along the entire plasma membrane. The selective partitioning of specific PKC isoforms at cell-cell contacts is not restricted to the GH3B6 cell line. It was also observed in blastocysts (12), in the pituitary gland (11), at heterotypic contacts between fibroblasts and epithelial cells (13), at the interface between macrophages and IgG-coated beads (14), and at the immunological synapse (1517). Although the molecular mechanism underlying this partitioning remains largely unknown, an interesting clue was provided by the discovery in human pituitary and thyroid tumors of a natural PKCα D294G mutant (18, 19), which is devoid of cell-cell contact targeting selectivity (20). A similar loss of selectivity is found when an E374G mutation is introduced in PKCϵ (11), indicating that the Asp-294 and Glu-374 amino acids located within the V3 region of PKCα and ϵ, respectively, are essential for proper targeting after activation. Interestingly, the PKCα D294G mutant was also shown to be a loss-of-function mutant (21). However, because replacing Phe by Glu in the corresponding position does not induce the targeting of PKCδ to the cell-cell contact, it is likely that other amino acids are required for cell-cell contact targeting selectivity.In the present work, we sought to deepen our understanding of the requirements for efficient targeting to the cell-cell contact by focusing our analysis on the sequence surrounding position Asp-294 of PKCα and Glu-374 of PKCϵ. On the basis of isoform sequence comparison, we identified a 20-aa stretch in the V3 region of PKCϵ that includes Glu-374 and contains one of the two 14-3-3-binding sites of PKCϵ and a putative amphipathic α-helix. This 20-aa module fulfills the criteria of a cell-cell contact targeting sequence, and we therefore propose to name this sequence 3CTS.  相似文献   

8.

Background

Protein kinase C (PKC) ε, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCε in lung cancer metastasis has not yet been established.

Principal Findings

Here we show that RNAi-mediated knockdown of PKCε in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCε depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCε with εV1-2, a specific PKCε inhibitor. PKCε was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCε-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis.

Conclusions

Our results implicate PKCε as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target.  相似文献   

9.

Background

HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles.

Results

uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA.

Conclusions

These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.  相似文献   

10.
11.
Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ−/−) mice as compared with wild-type (PKCδ+/+) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.  相似文献   

12.
13.
Liu XF  Xie X  Miki T 《Cellular signalling》2006,18(12):2314-2323
The attachment of spindle microtubules to kinetochores is crucial for accurate segregation of chromosomes to daughter cells during mitosis. While a growing number of proteins involving this step are being identified, its molecular mechanisms are still not clear. Here we show that protein kinase C ζ (PKCζ) is localized at the mitotic spindle during mitosis and plays a role in stable kinetochore-microtubule attachment. Striking staining for PKCζ was observed at the mitotic spindle and spindle poles in cells at prometaphase and metaphase. PKCζ molecules at these stages were phosphorylated at Thr-410, as detected by a phosphospecific antibody. PKCζ was also detected at the spindle midzone and the midbody during anaphase and telophase, respectively, and PKCζ at these stages was no longer phosphorylated at Thr-410. The polarity determinants Par3 and Par6, which are known to associate with PKCζ, were also localized to the spindles and spindle poles at prometaphase and metaphase. Knockdown of PKCζ by RNA interference affected normal chromosome alignment leading to generation of cells with aberrant nuclei. A specific PKCζ inhibitor strongly blocked the formation of cold-sensitive stable kinetochore microtubules, and thus prevented microtubule-kinetochore attachment. Treatment of cells with the PKCζ inhibitor also dislocated the minus-end directed motor protein dynein from kinetochores, but not the mitotic checkpoint proteins Mad2 and CENP-E. Prolonged exposure to the PKCζ inhibitor eventually resulted in cell death. These results suggest a critical role of PKCζ in spindle microtubule-kinetochore attachment and subsequent chromosomal separation.  相似文献   

14.

Aims

ICAM-1-dependent leukocyte recruitment in vivo is inhibited by the vitamin E isoform d-α-tocopherol and elevated by d-γ-tocopherol. ICAM-1 is reported to activate endothelial cell signals including protein kinase C (PKC), but the PKC isoform and the mechanism for ICAM-1 activation of PKC are not known. It is also not known whether ICAM-1 signaling in endothelial cells is regulated by tocopherol isoforms. We hypothesized that d-α-tocopherol and d-γ-tocopherol differentially regulate ICAM-1 activation of endothelial cell PKC.

Results

ICAM-1 crosslinking activated the PKC isoform PKCα but not PKCβ in TNFα-pretreated human microvascular endothelial cells. ICAM-1 activation of PKCα was blocked by the PLC inhibitor U73122, ERK1/2 inhibitor PD98059, and xanthine oxidase inhibitor allopurinol. ERK1/2 activation was blocked by inhibition of XO and PLC but not by inhibition of PKCα, indicating that ERK1/2 is downstream of XO and upstream of PKCα during ICAM-1 signaling. During ICAM-1 activation of PKCα, the XO-generated ROS did not oxidize PKCα. Interestingly, d-α-tocopherol inhibited ICAM-1 activation of PKCα but not the upstream signal ERK1/2. The d-α-tocopherol inhibition of PKCα was ablated by the addition of d-γ-tocopherol.

Conclusions

Crosslinking ICAM-1 stimulated XO/ROS which activated ERK1/2 that then activated PKCα. ICAM-1 activation of PKCα was inhibited by d-α-tocopherol and this inhibition was ablated by the addition of d-γ-tocopherol. These tocopherols regulated ICAM-1 activation of PKCα without altering the upstream signal ERK1/2. Thus, we identified a mechanism for ICAM-1 activation of PKC and determined that d-α-tocopherol and d-γ-tocopherol have opposing regulatory functions for ICAM-1-activated PKCα in endothelial cells.  相似文献   

15.
Oligomeric procyanidins were isolated from the leaves and flowers of hawthorn (Crataegus laevigata). A trimer, epicatechin-(4β→8)-epicatechin-(4β→6)-epicatechin, and a pentamer consisting of (−)-epicatechin units linked through C-4β/C-8 bonds have been isolated from hawthorn for the first time, in addition to known procyanidins including dimers B-2, B-4 and B-5, trimers C-1 and epicatechin-(4β→6)-epicatechin-(4β→8)-epicatechin, and tetramer D-1. A fraction containing a hexamer was also found.  相似文献   

16.
Although treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) is known to protect a subset of cells from induction of apoptosis by death ligands such as Fas ligand and tumor necrosis factor-α-related apoptosis-inducing ligand, the mechanism of this protection is unknown. This study demonstrated that protection in short term apoptosis assays and long term proliferation assays was maximal when Jurkat or HL-60 human leukemia cells were treated with 2–5 nm PMA. Immunoblotting demonstrated that multiple PKC isoforms, including PKCα, PKCβ, PKCϵ, and PKCθ, translocated from the cytosol to a membrane-bound fraction at these PMA concentrations. When the ability of short hairpin RNA (shRNA) constructs that specifically down-regulated each of these isoforms was examined, PKCβ shRNA uniquely reversed PMA-induced protection against cell death. The PKCβ-selective small molecule inhibitor enzastaurin had a similar effect. Although mass spectrometry suggested that Fas is phosphorylated on a number of serines and threonines, mutation of these sites individually or collectively had no effect on Fas-mediated death signaling or PMA protection. Further experiments demonstrated that PMA diminished ligand-induced cell surface accumulation of Fas and DR5, and PKCβ shRNA or enzastaurin reversed this effect. Moreover, enzastaurin sensitized a variety of human tumor cell lines and clinical acute myelogenous leukemia isolates, which express abundant PKCβ, to tumor necrosis factor-α related apoptosis-inducing ligand-induced death in the absence of PMA. Collectively, these results identify a specific PKC isoform that modulates death receptor-mediated cytotoxicity as well as a small molecule inhibitor that mitigates the inhibitory effects of PKC activation on ligand-induced death receptor trafficking and cell death.  相似文献   

17.
18.
Members of the protein kinase C (PKC) family of serine-threonine kinases are important regulators of immune cell survival. Ingenol 3-angelate (PEP005) activates a broad range of PKC isoforms and induces apoptosis in acute myeloid leukemia cells by activating the PKC isoform PKCδ. We show here that, in contrast to its effect on leukemic cells, PEP005 provides a strong survival signal to resting and activated human T cells. The antiapoptotic effect depends upon the activation of PKCθ. This PKC isoform is expressed in T cells but is absent in myeloid cells. Further studies of the mechanism involved in this process showed that PEP005 inhibited activated CD8+ T cell apoptosis through the activation of NFκB downstream of PKCθ, leading to increased expression of the antiapoptotic proteins Mcl-1 and Bcl-xL. Transfection of CD8+ T cells with dominant-negative PKCθ diminished the prosurvival effect of PEP005 significantly. Ectopic expression of PKCθ in the acute myeloid leukemia cell line NB4 turned their response to PEP005 from an increased to decreased rate of apoptosis. Therefore, in contrast to myeloid leukemia cells, PEP005 provides a strong survival signal to T cells, and the expression of functional PKCθ influences whether PKC activation leads to an anti- or proapoptotic outcome in the cell types tested.  相似文献   

19.
Platelet activation must be tightly controlled to provide an effective, but not excessive, response to vascular injury. Cytosolic calcium is a critical regulator of platelet function, including granule secretion, integrin activation, and phosphatidylserine (PS) exposure. Here we report that the novel protein kinase C isoform, PKCθ, plays an important role in negatively regulating Ca2+ signaling downstream of the major collagen receptor, glycoprotein VI (GPVI). This limits PS exposure and so may prevent excessive platelet procoagulant activity. Stimulation of GPVI resulted in significantly higher and more sustained Ca2+ signals in PKCθ−/− platelets. PKCθ acts at multiple distinct sites. PKCθ limits secretion, reducing autocrine ADP signaling that enhances Ca2+ release from intracellular Ca2+ stores. PKCθ thereby indirectly regulates activation of store-operated Ca2+ entry. However, PKCθ also directly and negatively regulates store-independent Ca2+ entry. This pathway, activated by the diacylglycerol analogue, 1-oleoyl-2-acetyl-sn-glycerol, was enhanced in PKCθ−/− platelets, independently of ADP secretion. Moreover, LOE-908, which blocks 1-oleoyl-2-acetyl-sn-glycerol-induced Ca2+ entry but not store-operated Ca2+ entry, blocked the enhanced GPVI-dependent Ca2+ signaling and PS exposure seen in PKCθ−/− platelets. We propose that PKCθ normally acts to restrict store-independent Ca2+ entry during GPVI signaling, which results in reduced PS exposure, limiting platelet procoagulant activity during thrombus formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号