首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The sustainable production and supply of raw materials (“nonenergy raw materials”) and primary energy carriers (“energy raw materials”) is a core element of many policies. The natural resource base for their production and supply, and the access thereto, are limited. Moreover, raw material supply is high on environmental and social impact agendas as well. A broad, quantitative framework that supports decision makers is recommended so as to make use of raw materials and primary energy carriers more sustainably. First, this article proposes a holistic classification of raw materials and primary energy carriers. This is an essential prerequisite for developing an integrated sustainability assessment framework (ISAF). Indeed, frequently, only a subset of raw materials and primary energy carriers are considered in terms of their source, sector, or final application. Here, 85 raw materials and 30 primary energy carriers overall are identified and grouped into seven and five subgroups, respectively. Next, this article proposes a quantitative ISAF for the production and supply of raw materials and primary energy carriers, covering all the sustainability pillars. With the goal of comprehensiveness, the proposed ISAF integrates sustainability issues that have been covered and modeled in quite different quantitative frameworks: ecosystem services; classical life cycle assessment (LCA); social LCA; resource criticality assessment; and particular international concerns (e.g., conflict minerals assessment). The resulting four areas of concerns (i.e., environmental, technical, economic, and social/societal) are grouped into ten specific sustainability concerns. Finally, these concerns are quantified through 15 indicators, enabling the quantitative sustainability assessment of the production and supply of raw materials and primary energy carriers.  相似文献   

2.
Background, Aim and Scope Societal assessment is advocated as one of the three pillars in the evaluation of, and movement toward, sustainability. As is the case with the well established LCA, and the emerging LCC, societal life cycle assessment should be developed in such as way as to permit relative product comparisons, rather than absolute analyses. The development of societal life cycle assessment is in its infancy, and important concepts require clarification including the handling of the more than two hundred social indicators. Therefore, any societal life cycle assessment methodology must explain why it is midpoint- or endpoint-based as well as its reasons to be complimentary with, or included within, life cycle assessment. Materials and Methods: A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs.A geographically specific midpoint based societal life cycle assessment methodology, which employs labour hours as an intermediate variable in the calculation has been developed and evaluated against an existing LCA comparing two detergents. The methodology is based on using an existing life cycle inventory and, therefore, has identical system boundaries and functional units to LCA. The societal life cycle assessment methodology, much like LCA, passes from inventory, through characterisation factors, to provide an ultimate result. In analogy to economics and cost estimation, societal life cycle assessment combines, into its statistics, both data as well as estimates, some of which are correlated to elements of the LCI. It focuses on the work hours required to meet basic needs. Results: The societal life cycle assessment of an appended case study indicates that Detergent 2 generates, relative Detergent 1, approximately 20% less employment in Russia, 35% less in France, and approximately five times more in Canada and South Africa, the latter derived from its higher aluminium content. There is essentially no difference in the employment in the use country (Switzerland) nor in Morocco, where some of the waste disposal was assumed to take place. Discussion: Given that housing is more affordable, in terms of shelter units per labour hour, in South Africa, compared to Europe, it is, therefore, of no surprise that Detergent 2 provides a societal benefit in terms of housing. Detergent 2 does, however, result in dematerialization, in that its environmental impact is lower (LCI). Therefore, as less resources are employed and labour required, in extraction, production and transport, the societal benefits in health care, education and necessities, a grouped variable, are lower for Detergent 2. This is despite the employment shift away from Europe and to less 'developed' regions. Conclusions: The assessment of societal impacts involves several hundred specific indicators. Therefore, aggregation is, if not impossible, at least heavily value laden and, therefore, not recommended. The impact of a societal action, derived from a product purchase or otherwise, is also highly local. Given this, societal life cycle assessment, carried through to the midpoints, and based on an existing LCI, has been developed as a methodology. The results, for an existing LCA-detergent case, illustrate that societal life cycle assessment provides a means to investigate how policy and policy makers can be linked to sustainable development. The sensitivity analyses also clarify the decisions in regards to product improvement. Recommendations and Perspectives: The goal of societal life cycle assessment is not to make decisions, but rather to point out tradeoffs to decision- or policy-makers. This case, and the methodology that it is based on, permit such a comparison. Substituting Detergent 2 for Detergent 1 reduces resource use at the expense of an increase in atmospheric and terrestrial emissions. Access to housing is improved, though at the expense of education, health care and necessities. As a recommendation, one would look at the fact that the majority of indicators are superior for Detergent 2 relative to Detergent 1and seek to improve the aqueous emissions in Detergent 2 via a change in the formulation. An energy or fossil fuel substitution at the site of production could also improve the societal benefits in terms of education and health care. While societal life cycle assessment remains in its infancy, a methodology does exist. The field can, therefore, be viewed in a similar way to LCA in the early 1990s, with a need to validate, consolidate and, ultimately, built toward a standard. The contribution is aimed at contributing to such a discussion and therefore proposes that a societal life cycle assessment be LCI-derived, geographically specific, based on mid-points, and use employment as an intermediate variable.  相似文献   

3.
Goal, Scope and Background To enhance the use of life cycle assessment (LCA) as a tool in business decision-making, a methodology for Social life cycle impact assessment (LCIA) is being developed. Social LCA aims at facilitating companies to conduct business in a socially responsible manner by providing information about the potential social impacts on people caused by the activities in the life cycle of their product. The development of the methodology has been guided by a business perspective accepting that companies, on the one hand, have responsibility for the people affected by their business activities, but, on the other hand, must also be able to compete and make profit in order to survive in the marketplace. Methods A combined, bottom-up and top-down approach has been taken in the development of the Social LCIA. Universal consensus documents regarding social issues as well as consideration for the specific business context of companies has guided the determination of damage categories, impact categories and category indicators. Results Discussion, and Conclusion. The main results are the following: (1) Impacts on people are naturally related to the conduct of the companies engaged in the life cycle rather than to the individual industrial processes, as is the case in Environmental LCA. Inventory analysis is therefore focused on the conduct of the companies engaged in the life cycle. A consequence of this view is that a key must be determined for relating the social profiles of the companies along the life cycle to the product. This need is not present in Environmental LCA, where we base the connection on the physical link which exists between process and product. (2) Boundaries of the product system are determined with respect to the influence that the product manufacturer exerts over the activities in the product chain. (3) A two-layer Social LCA method with an optional and an obligatory set of impact categories is suggested to ensure both societal and company relevance of the method. The obligatory set of impact categories encompasses the minimum expectations to a company conducting responsible business. (4) A new area of protection, Human dignity and Well-being, is defined and used to guide the modelling of impact chains. (5) The Universal Declaration of Human Rights serves as normative basis for Social LCA, together with local or country norms based on socio-economic development goals of individual countries. The International Labour Organisation's Conventions and Recommendations, and the Tripartite Declaration of Principles concerning Multinational Enterprises and Social Policy, support development of the impact pathway top-down, starting from the normative basis. (6) The obligatory part of Social LCA addresses the main stakeholder groups, employees, local community and society. Recommendations and Outlook Social LCA is still in its infancy and a number of further research tasks within this new area are identified.  相似文献   

4.
There is a growing concern over the security and sustainable supply of raw material among businesses and governments of developed, material‐intensive countries. This has led to the development of a systematic analysis of risk incorporated with raw materials usage, often referred as criticality assessment. In principle, this concept is based on the material flow approach. The potential role of life cycle assessment (LCA) to integrate resource criticality through broadening its scope into the life cycle sustainability assessment (LCSA) framework has been discussed within the LCA communities for some time. In this article, we aim at answering the question of how to proceed toward integration of the geopolitical aspect of resource criticality into the LCSA framework. The article focuses on the assessment of the geopolitical supply risk of 14 resources imported to the seven major advanced economies and the five most relevant emerging countries. Unlike a few previous studies, we propose a new method of calculation for the geopolitical supply risk, which is differentiated by countries based on the import patterns instead of a global production distribution. Our results suggest that rare earth elements, tungsten, antimony, and beryllium generally pose high geopolitical supply risk. Results from the Monte Carlo simulation allow consideration of data uncertainties for result interpretation. Issues concerning the consideration of the full supply chain are exemplarily discussed for cobalt. Our research broadens the scope of LCA from only environmental performance to a resource supply‐risk assessment tool that includes accessibility owing to political instability and market concentration under the LCSA framework.  相似文献   

5.
产品生命周期评价(LCA)中的供应链数据收集非常困难而且效率低下,因而在产品LCA研究中常常近似处理、甚至忽略供应链实际生产过程,严重影响了LCA的数据质量与可信度。开发专门的供应链数据收集工具是解决这一问题的有效途径。介绍了可进行在线供应链调查、建模与计算分析的LCA系统e Footprint,基于该系统提出了在线的LCA工作方法,通过长虹美菱冰箱的应用案例验证了系统与方法的可行性,为提高产品LCA的效率和质量提供了新的解决方案。  相似文献   

6.
Life cycle assessment (LCA) is a widely accepted methodology to support decision‐making processes in which one compares alternatives, and that helps prevent shifting of environmental burdens along the value chain or among impact categories. According to regulation in the European Union (EU), the movement of waste needs to be reduced and, if unavoidable, the environmental gain from a specific waste treatment option requiring transport must be larger than the losses arising from transport. The EU explicitly recommends the use of LCA or life cycle thinking for the formulation of new waste management plans. In the last two revisions of the Industrial Waste Management Programme of Catalonia (PROGRIC), the use of a life cycle thinking approach to waste policy was mandated. In this article we explain the process developed to arrive at practical life cycle management (LCM) from what started as an LCA project. LCM principles we have labeled the “3/3” principle or the “good enough is best” principle were found to be essential to obtain simplified models that are easy to understand for legislators and industries, useful in waste management regulation, and, ultimately, feasible. In this article, we present the four models of options for the management of waste solvent to be addressed under Catalan industrial waste management regulation. All involved actors concluded that the models are sufficiently robust, are easy to apply, and accomplish the aim of limiting the transport of waste outside Catalonia, according to the principles of proximity and sufficiency.  相似文献   

7.
Establishing a comprehensive environmental footprint that indicates resource use and environmental release hotspots in both direct and indirect operations can help companies formulate impact reduction strategies as part of overall sustainability efforts. Life cycle assessment (LCA) is a useful approach for achieving these objectives. For most companies, financial data are more readily available than material and energy quantities, which suggests a hybrid LCA approach that emphasizes use of economic input‐output (EIO) LCA and process‐based energy and material flow models to frame and develop life cycle emission inventories resulting from company activities. We apply a hybrid LCA framework to an inland marine transportation company that transports bulk commodities within the United States. The analysis focuses on global warming potential, acidification, particulate matter emissions, eutrophication, ozone depletion, and water use. The results show that emissions of greenhouse gases, sulfur, and particulate matter are mainly from direct activities but that supply chain impacts are also significant, particularly in terms of water use. Hotspots were identified in the production, distribution, and use of fuel; the manufacturing, maintenance, and repair of boats and barges; food production; personnel air transport; and solid waste disposal. Results from the case study demonstrate that the aforementioned footprinting framework can provide a sufficiently reliable and comprehensive baseline for a company to formulate, measure, and monitor its efforts to reduce environmental impacts from internal and supply chain operations.  相似文献   

8.
Three assessment methods, material flow analysis (MFA), life cycle analysis (LCA), and multiattribute utility theory (MAUT) are systematically combined for supporting the choice of best end‐of‐life scenarios for polyethylene terephthalate (PET) waste in a municipality of a developing country. MFA analyzes the material and energy balance of a firm, a region, or a nation, identifying the most relevant processes; LCA evaluates multiple environmental impacts of a product or a service from cradle to grave; and MAUT allows for inclusion of other aspects along with the ecological ones in the assessment. We first systematically coupled MFA and LCA by defining “the service offered by the total PET used during one year in the region” as the functional unit. Inventory and impacts were calculated by multiplying MFA flows with LCA impacts per kilogram. We used MAUT to include social and economic aspects in the assessment. To integrate the subjective point of view of stakeholders in the MAUT, we normalized the environmental, social, and economic variables with respect to the magnitude of overall impacts or benefits in the country. The results show large benefits for recycling scenarios from all points of view and also provide information about waste treatment optimization. The combination of the three assessment methods offers a powerful integrative assessment of impacts and benefits. Further research should focus on data collection methods to easily determine relevant material flows. LCA impact factors specific to Colombia should be developed, as well as more reliable social indicators.  相似文献   

9.
The spot price for tantalum, a metal used in high‐performance consumer electronics, spiked in 2000, triggering a boom in artisanal mining of surface deposits in the Democratic Republic of Congo (DRC). The profit from columbite‐tantalite ore, or coltan, is alleged to have funded militants during that country's civil war. One warlord famously claimed that in 2000, coltan delivered a million dollars per month. While coltan mining was neither a necessary nor sufficient cause for the civil war, there is nevertheless a clear association between mining and conflict. In order to trace global flows of coltan out of the DRC, we used a high‐resolution multiregion input‐output (MRIO) table and a hybrid life cycle assessment (LCA) approach to trace exports through international supply chains in order to estimate a “coltan footprint” for various products. In this case study, our aim is to highlight the power and utility of hybrid LCA analysis using high‐resolution global MRIO accounts. We estimate which supply chains, nations, and consumer goods carry the largest loads of embodied coltan. This hybrid LCA case study provides estimates on illicit flows of coltan, estimates a coltan footprint of consumption, and highlights the advantages and challenges of using hybrid monetary‐physical input‐output/LCA approaches to study and quantify a negative social impact as an input to production. If successful, the hybrid LCA approach could be a useful and expedient measurement tool for understanding flows of conflict minerals embodied in supply chains.  相似文献   

10.
The diversity of raw materials used in modern products, compounded by the risk of supply disruptions—due to uneven geological distribution of resources, along with socioeconomic factors like production concentration and political (in)stability of raw material producing countries—has drawn attention to the subject of raw material “criticality.” In this article, we review the state of the art regarding the integration of criticality assessment, herein termed “product‐level supply risk assessment,” as a complement to environmental life cycle assessment. We describe and compare three methods explicitly developed for this purpose—Geopolitical Supply Risk (GeoPolRisk), Economic Scarcity Potential (ESP), and the Integrated Method to Assess Resource Efficiency (ESSENZ)—based on a set of criteria including considerations of data sources, uncertainties, and other contentious methodological aspects. We test the methods on a case study of a European‐manufactured electric vehicle, and conclude with guidance for appropriate application and interpretation, along with opportunities for further methodological development. Although the GeoPolRisk, ESP, and ESSENZ methods have several limitations, they can be useful for preliminary assessments of the potential impacts of raw material supply risks on a product system (i.e., “outside‐in” impacts) alongside the impacts of a product system on the environment (i.e., “inside‐out” impacts). Care is needed to not overlook critical raw materials used in small amounts but nonetheless important to product functionality. Further methodological development could address regional and firm‐level supply risks, multiple supply‐chain stages, and material recycling, while improving coverage of supply risk characterization factors.  相似文献   

11.
Ecological footprint (EF) is a metric that estimates human consumption of biological resources and products, along with generation of waste greenhouse gas (GHG) emissions in terms of appropriated productive land. There is an opportunity to better characterize land occupation and effects on the carbon cycle in life cycle assessment (LCA) models using EF concepts. Both LCA and EF may benefit from the merging of approaches commonly used separately by practitioners of these two methods. However, few studies have compared or integrated EF with LCA. The focus of this research was to explore methods for improving the characterization of land occupation within LCA by considering the EF method, either as a complementary tool or impact assessment method. Biofuels provide an interesting subject for application of EF in the LCA context because two of the most important issues surrounding biofuels are land occupation (changes, availability, and so on) and GHG balances, two of the impacts that EF is able to capture. We apply EF to existing fuel LCA land occupation and emissions data and project EF for future scenarios for U.S. transportation fuels. We find that LCA studies can benefit from lessons learned in EF about appropriately modeling productive land occupation and facilitating clear communication of meaningful results, but find limitations to the EF in the LCA context that demand refinement and recommend that EF always be used along with other indicators and metrics in product‐level assessments.  相似文献   

12.
The application of life cycle assessment (LCA) in a policy context highlights the need for a “consequential” LCA (CLCA), which differs from an “attributional” LCA (ALCA). Although CLCA offers some advantages over ALCA, such as a capacity to account for emissions resulting from both substitution and price effects, it entails additional assumptions and cost and may yield estimates that are more uncertain (e.g., estimates of impact of biofuel policies on greenhouse gas [GHG] emissions). We illustrate how a CLCA that relies on simple partial equilibrium models could provide important insights on the direction and magnitude of price effects while limiting the complexity of CLCA. We describe how such a CLCA, when applied early in the policy life cycle, could help identify policy formulations that reduce the magnitude of adverse price effects relative to the beneficial substitution effect on emissions because—as the experience with biofuel regulations indicates—regulating price effects is costly and controversial. We conclude that the salient contribution of CLCA in the policy process might lie in warning policy makers about the vulnerabilities in a policy with regard to environmental impact and to help modify potentially counterproductive formulations rather than in deriving the precise estimates for uncertain variables, such as the life cycle GHG intensity of product or average indirect emissions.  相似文献   

13.
- Goal, Scope, Background. As of July 1st, 2006, lead will be banned in most solder pastes used in the electronics industry. This has called for environmental evaluation of alternatives to tin-lead solders. Our life cycle assessment (LCA) has two aims: (i) to compare attributional and consequential LCA methodologies, and (ii) to compare a SnPb solder (62% tin, 36% lead, 2% silver) to a Pb-free solder (95.5% tin, 3.8% silver, 0.7% copper). Methods An attributional LCA model describes the environmental impact of the solder life cycle. Ideally, it should include average data on each unit process within the life cycle. The model does not include unit processes other than those of the life cycle investigated, but significant cut-offs within the life cycle can be avoided through the use of environmentally expanded input-output tables. A consequential LCA model includes unit processes that are significantly affected irrespective of whether they are within or outside the life cycle. Ideally, it should include marginal data on bulk production processes in the background system. Our consequential LCA model includes economic partial equilibrium models of the lead and scrap lead markets. However, both our LCA models are based on data from the literature or from individual production sites. The partial equilibrium models are based on assumptions. The life cycle impact assessment is restricted to global warming potential (GWP). Results and Discussion The attributional LCA demonstrates the obvious fact that the shift from SnPb to Pb-free solder means that lead is more or less eliminated from the solder life cycle. The attributional LCA results also indicate that the Pb-free option contributes 10% more to the GWP than SnPb. Despite the poor quality of the data, the consequential LCA demonstrates that, when lead use is eliminated from the solder life cycle, the effect is partly offset by increased lead use in batteries and other products. This shift can contribute to environmental improvement because lead emissions are likely to be greatly reduced, while batteries can contribute to reducing GWP, thereby offsetting part of the GWP increase in the solder life cycle. Conclusions The shift from SnPb to Pb-free solder is likely to result in reduced lead emissions and increased GWP. Attributional and consequential LCAs yield complementary knowledge on the consequences of this shift in solder pastes. At present, consequential LCA is hampered by the lack of readily available marginal data and the lack of input data to economic partial equilibrium models. However, when the input to a consequential LCA model is in the form of quantitative assumptions based on a semi-qualitative discussion, the model can still generate new knowledge. Recommendations and Outlook Experts on partial equilibrium models should be involved in consequential LCA modeling in order to improve the input data on price elasticity, marginal production, and marginal consumption.  相似文献   

14.
Battery energy storage systems (BESS) are expected to fulfill a crucial role in the renewable energy systems of the future. Within current regulatory frameworks, assessing the sustainability as well as the social risks for BESS should be considered. In this research we conducted a social life cycle assessment (S-LCA) of two BESS: the vanadium redox flow battery (VRFB) and the lithium-ion battery (LIB). The S-LCA was conducted based on the guidelines set by UNEP/SETAC and using the PSILCA v.3 database. It was found that most social risks related to the life cycle of the batteries are associated with the raw material extraction stage, while sectors related to chemicals also entail considerable risks. Workers are the stakeholder group affected most. These results apply to supply chains located in both China and Germany, but risks were lower for similar supply chains in Germany. An LIB with a nickel manganese cobalt oxide cathode is associated with considerably larger risks compared to a LIB with lithium manganese oxide cathode. For a VRFB life cycle with an increased vanadium price, the social risks were higher than those of the VRFB supply chain with a regular vanadium price. Our paper shows that S-LCA through the PSILCA database can provide interesting insights into the potential social risks associated with a certain product's life cycle. Generalizations of the results are not recommended, and one should be careful with assessments for technologies that have not yet matured due to the cost sensitivity of the methodology.  相似文献   

15.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

16.
Sustainability-a term originating from silviculture, which was adopted by UNEP as the main political goal for the future development of humankind-is also the ultimate aim of product development. It comprises three components: environment, economy and social aspects which have to be properly assessed and balanced if a new product is to be designed or an existing one is to be improved. The responsibility of the researchers involved in the assessment is to provide appropriate and reliable instruments. For the environmental part there is already an internationally standardized tool: Life Cycle Assessment (LCA). Life Cycle Costing (LCC) is the logical counterpart of LCA for the economic assessment. LCC surpasses the purely economic cost calculation by taking into account hidden costs and potentially external costs over the life cycle of the product. It is a very important point that different life-cycle based methods (including Social Life Cycle Assessment) for sustainablity assessment use the same system boundaries.  相似文献   

17.
A normalization step is widely exercised in life cycle assessment (LCA) studies in order to better understand the relative significance of impact category results. In the normalization stage, normalization references (NRs) are the characterized results of a reference system, typically a national or regional economy. Normalization is widely practiced in LCA‐based decision support and policy analysis (e.g., LCA cases in municipal solid waste treatment technologies, renewable energy technologies, and environmentally preferable purchasing programs, etc.). The compilation of NRs demands significant effort and time as well as an intimate knowledge of data availability and quality. Consequently only one set of published NRs is available for the United States, and has been adopted by various studies. In this study, the completeness of the previous NRs was evaluated and significant data gaps were identified. One of the reasons for the significant data gaps was that the toxic release inventory (TRI) data significantly underestimate the potential impact of toxic releases for some sectors. Also the previous NRs did not consider the soil emissions and nitrogen (N) and phosphorus (P) runoffs to water and chemical emissions to soils. Filling in these data gaps increased the magnitude of NRs for “human health cancer,” “human health noncancer,” “ecotoxicity,” and “eutrophication” significantly. Such significant changes can alter or even reverse the outcome of an LCA study. We applied the previous and updated NRs to conventional gasoline and corn ethanol LCAs. The results demonstrate that NRs play a decisive role in the interpretation of LCA results that use a normalization step.  相似文献   

18.
Purpose

The social aspects of municipal solid waste management (MSWM) systems are underpinning their sustainability and effectiveness. The assessment of these systems from a life cycle perspective is widespread throughout environmental life cycle assessment (LCA), but few studies have used social life cycle assessment (S-LCA). The present study is an innovative review with the objective to analyse and describe the current level of development of S-LCA applications in MSWM, and to identify the main methodological challenges and best practices, aiming at recommending approaches to harmonise future S-LCA applications in MSWM.

Materials and methods

A systematic review of the literature found 36 relevant scientific articles. These were submitted to bibliometric and content analysis, which includes an analysis of how methodological aspects of the four phases of S-LCA were applied in comparison with best practice and existing guidelines.

Results and discussion

There was a predominance of case studies in developing countries (59%) and evaluation of the stages of collection/transportation, pre-processing (sorting) and landfilling (55%). There were more studies focusing on stakeholders, “workers” and “local communities” and in the impact subcategories “employment”, “working hours”, “health and safety/working conditions”, “community involvement/participation” and “health and safety/living conditions of community”. There was great variability in the application of the method (47% of the studies included methodological developments). However, the 39% based on UNEP guidelines were closer to a methodological consensus.

Conclusion

In general, studies need more detail and clarity in describing the methodological decisions used. Improvements are needed for issues that limit the S-LCA method, including the difficulties of covering the entire life cycle, relating impacts to the functional unit, standardizing impact assessment methods, addressing allocation and data quality issues and interpretation of results and their limitations. Improvements can be achieved by using participatory methods in the selection of categories, subcategories and impact indicators, as well as by clarifying the definition of a product system and detailing “cut-off criteria” of processes/organizations and the impact of these decisions on results.

  相似文献   

19.
Life cycle sustainability assessment (LCSA) can be used as a tool to understand how products and operating systems can meet the United Nations’ Sustainable Development Goals (SDGs). However, existing linkages between SDGs and LCSA are limited and an analysis of coverage in literature is needed. In this paper, we propose a generic methodological framework establishing connections between LCSA categories at micro-level and SDGs at macro-level based on derivation from the literature. The qualitative heuristic research method developed builds on keyword literature search, bibliometric analysis, mapping, and narrative literature review for connection rationales. By using qualitative assessment levels, an assessment of linkages between LCSA categories and SDGs reveal that “technology development,” “public commitment to sustainability issues,” “access to material resources,” and “education provided in the local community” have the highest number of reported relationships with SDGs. Twenty-two LCSA categories were found with no direct/indirect connection with any SDG; reasons include absence of life cycle thinking perspective in SDGs and lack of sustainability-based discussion for workers, consumers, and value chain actors' stakeholder groups. Despite these gaps, the results provide new insights for industries looking to measure the contribution of their product systems along their life cycle in the context of SDGs supporting them to some extent, to select LCSA categories with either highest number of identified relationships to SDGs or that contribute to prioritized list of SDGs. The approach provides a starting point to improve transparency and consistency of reporting of sustainability performance of product systems by connecting LCSA to the global agenda for sustainable development.  相似文献   

20.
Milk and beef production cause 9% of global greenhouse gas (GHG) emissions. Previous life cycle assessment (LCA) studies have shown that dairy intensification reduces the carbon footprint of milk by increasing animal productivity and feed conversion efficiency. None of these studies simultaneously evaluated indirect GHG effects incurred via teleconnections with expansion of feed crop production and replacement suckler‐beef production. We applied consequential LCA to incorporate these effects into GHG mitigation calculations for intensification scenarios among grazing‐based dairy farms in an industrialized country (UK), in which milk production shifts from average to intensive farm typologies, involving higher milk yields per cow and more maize and concentrate feed in cattle diets. Attributional LCA indicated a reduction of up to 0.10 kg CO2e kg?1 milk following intensification, reflecting improved feed conversion efficiency. However, consequential LCA indicated that land use change associated with increased demand for maize and concentrate feed, plus additional suckler‐beef production to replace reduced dairy‐beef output, significantly increased GHG emissions following intensification. International displacement of replacement suckler‐beef production to the “global beef frontier” in Brazil resulted in small GHG savings for the UK GHG inventory, but contributed to a net increase in international GHG emissions equivalent to 0.63 kg CO2e kg?1 milk. Use of spared dairy grassland for intensive beef production can lead to net GHG mitigation by replacing extensive beef production, enabling afforestation on larger areas of lower quality grassland, or by avoiding expansion of international (Brazilian) beef production. We recommend that LCA boundaries are expanded when evaluating livestock intensification pathways, to avoid potentially misleading conclusions being drawn from “snapshot” carbon footprints. We conclude that dairy intensification in industrialized countries can lead to significant international carbon leakage, and only achieves GHG mitigation when spared dairy grassland is used to intensify beef production, freeing up larger areas for afforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号