首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When synaptic plasma membrane fragments are incubated with ATP in the presence of Mg2+, phosphate is transferred, not only to protein-bound serine, but also to protein-bound histidine. The phosphorylation of protein-bound serine is stimulated by cyclic AMP and has a Km for ATP of about 0.12 mM, both in the presence and absence of cyclic AMP. By contrast, the phosphorylation of protein-bound histidine is unaffected by cyclic AMP and does not follow Michaelis-Menton kinetics since a non-linear double reciprocal plot is given when activity is measured at various ATP concentrations.  相似文献   

2.
Nucleoside diphosphate kinase (NDPK) has many roles and is present in different locations in the cell. Membrane-bound NDPK is present in epithelial fractions enriched for the apical membrane. Here, we show in human, mouse and sheep airway membranes, that the phosphorylation state of membrane-bound NDPK on histidine and serine residues differs dependent on many regulatory factors. GTP (but not ATP) promotes serine phosphorylation (pSer) of NDPK. Further we find that rising [AMP] promotes pSer (only with GTP) but inhibits histidine phosphorylation (pHis) of NDPK from both donors. We find that NDPK co-immunoprecipitates reciprocally with AMP-activated kinase and that these two proteins can co-localise in human airways. AMP concentrations rise rapidly when ATP is depleted or during hypoxia. We find that, in human airway cells exposed to hypoxia (3% oxygen), membrane-bound NDPK is inhibited. Although histidine phosphorylation should in principle be independent of the nucleotide triphosphates used, we speculate that this membrane pool of NDPK may be able to switch function dependent on nucleotide species.  相似文献   

3.
Free ribosomes and a smooth-microsomal fraction were prepared from bovine corpus luteum. Both preparations will self-phosphorylate when incubated with Mg(2+) and ATP, but at low concentrations of Mg(2+) and ATP the self-phosphorylation of the smooth-microsomal fraction was much more dependent on cyclic AMP than was that of free ribosomes, stimulation by the nucleotide being up to 10-fold in the former case. The self-phosphorylation of the smooth-microsomal fraction was studied further. The reaction bears similarities to that brought about by soluble cyclic AMP-dependent protein kinase, being inhibited by Ca(2+) and the heat-stable inhibitor protein from skeletal muscle. Cyclic GMP will activate the reaction at concentrations higher than those required for full activation by cyclic AMP. In the presence of cyclic AMP, phosphate bound to protein is found almost exclusively as phosphoserine. Several proteins are phosphorylated, as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, and the phosphorylation of all of them is markedly stimulated by cyclic AMP. If the reaction is carried out at high concentrations of Mg(2+) and ATP, a distinct cyclic AMP-independent phosphorylation is observed. This activity is not inhibited by the heat-stable inhibitor protein, and phosphate is found esterified with both threonine and serine residues.  相似文献   

4.
5.
6.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

7.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

8.
Platelet responses are inhibited by agents such as prostaglandin E1 that increase the cytoplasmic concentration of cyclic AMP. Inhibition is thought to result from phosphorylation of specific proteins. One protein that becomes phosphorylated is glycoprotein (GP) Ib beta, a component of the GP Ib.IX complex. We have suggested that phosphorylation of GP Ib beta inhibits the collagen-induced polymerization of actin. The aim of the present study was to identify the amino acid(s) in GP Ib beta that is phosphorylated. Purified GP Ib.IX complex was phosphorylated by the catalytic subunit of purified bovine cyclic AMP-dependent protein kinase in the presence of [gamma-32P]ATP. Phosphoamino acid analysis showed that in GP Ib beta, [32P]phosphate was incorporated only into serine and was in a single tryptic peptide. Amino acid sequencing showed that this peptide was from the cytoplasmic domain of GP Ib beta and encompassed residues 161-175. A single serine residue, serine 166, contained the radiolabel. To determine whether the same residue was phosphorylated in intact platelets, GP Ib beta was isolated from 32P-labeled platelets before or after their exposure to prostaglandin E1. In both cases, radiolabel was present in phosphoserine and was in a single tryptic peptide. This peptide was the same as that which was phosphorylated in the purified GP Ib.IX complex, as shown by its identical mobility on two-dimensional tryptic maps, the presence of a positively charged residue in the fourth position, and the presence of the radiolabel in the sixth position of the peptide. This study shows that when cyclic AMP concentrations rise in platelets, the cytoplasmic domain of GP Ib beta is phosphorylated on serine 166, probably by cyclic AMP-dependent protein kinase. We suggest that phosphorylation of this residue may contribute to the inhibitory actions of cyclic AMP by inhibiting collagen-induced polymerization of actin.  相似文献   

9.
The effects of glucose and of various inhibitors of glycolysis or of oxidative phosphorylation on stimulated lipolysis and on intracellular cyclic AMP and ATP levels were investigated in isolated human fat cells. The glycolysis inhibitors, NaF and monoiodoacetate, inhibited epinephrine or theophylline-stimulated lipolysis and parallely reduced the intracellular cyclic AMP and ATP levels; however, neither NaF nor monoidoacetate significantly affected dibutyryl cyclic AMP-induced lipolysis. Removal of glucose from the medium also reduced the rate of epinephrine-stimulated lipolysis and the intracellular cyclic AMP and ATP levels but failed to modify the lipolytic activity of dibutyryl cyclic AMP. The oxidative phosphorylation inhibitors, antimycin A and, under fixed conditions, 2,4-dinitrophenol also strongly decreased the adipocyte cyclic AMP and ATP levels but inhibited as well the rate of epinephrine- and of dibutyryl cyclic AMP-induced lipolysis. N-Ethylmaleimide, a mixed glycolysis and oxidative phosphorylation inhibitor, not only reduced the intracellular cyclic AMP and ATP levels and epinephrine- or theophylline-induced lipolysis, but also that stimulated by dibutyryl cyclic AMP. When glycolysis was almost fully inhibited, human fat cells were insensitive to epinephrine but remained fully responsive to dibutyryl cyclic AMP. These results, showing a relationship between ATP availability, cyclic AMP synthesis and lipolysis, suggest a different ATP requirement for cyclic AMP synthesis and triacylglycerol lipase activation, a difference which could explain why ATP issued from glucose breakdown appears to be a determinant factor for cyclic AMP synthesis, but not for triacylglycerol lipase activation in human fat cells.  相似文献   

10.
Summary GTP as well as ATP can act as phosphate donor for the intrinsic protein kinase activity of synaptic plasma membranes. There are many similarities between the activities observed with ATP or GTP. Both need a divalent cation, Mg2+ being preferred, both are slightly inhibited by Na+, and more strongly by K+, both are inhibited by theophylline and adenosine. The Km for GTP (0.13 mM) is similar to that ATP (0.12 mM). There are, however, some differences in properties. When GTP instead of ATP is the phosphate donor the pH optimum is 6.5 instead of 7.4. In addition NH 4 + inhibits the transfer of phosphate from GTP but not from ATP. More importantly, cyclic AMP only stimulates the transfer of phosphate from ATP not from GTP. SDS gel electrophoresis reveals that similar membrane proteins are phosphorylated by GTP and ATP in the presence or absence of cyclic AMP. This suggests that there may be two different types of protein kinase in the synaptic plasma membrane which act on similar membrane proteins. One is stimulated by cyclic AMP and is specific to ATP while the other is unaffected by cyclic nucleotides and can use either ATP or GTP as phosphate donor.Deceased  相似文献   

11.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weight between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [γ-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [γ-32P]ATP and cyclic AMP-dependent protein kinase form calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

12.
When the homogenate of rabbit superior cervical ganglia (SCG) was incubated in the presence of [gamma-32P]ATP and Mg2+, two specific proteins were strongly labeled. Their apparent molecular weights were 90,000 and 54,000, respectively. The phosphorylation of the latter was significantly stimulated by 10-50 nM cyclic GMP but to a lesser extent by cyclic AMP, whereas that of the former was not stimulated significantly by either of the cyclic nucleotides. The purified protein kinase inhibitor from rabbit skeletal muscle did not inhibit the phosphorylation. These results indicated that the observed phosphorylation of 54K protein was dependent on cyclic GMP but not on cyclic AMP. When intact SCG was incubated in the presence of 32Pi, phosphorylation of 90K protein was stimulated by cyclic GMP, dibutyryl cyclic GMP, and 8-bromo-cyclic GMP (10 microM), whereas phosphorylation of 54K protein was not significantly stimulated by any of these substances. The present demonstration of endogenous cyclic GMP-dependent protein kinase activity and its endogenous substrate proteins raises a possibility that the physiological actions of cyclic GMP in SCG are mediated by the phosphorylation of these proteins.  相似文献   

13.
The effects of hormonal status on protein kinase activity was examined in homogenates of rat liver. Protein kinase activity was evaluated from incorporation of 32P from [gamma-32P]ATP into protamine or histone as receptor substrates. Protamine phosphorylation in the presence or absence of cyclic AMP exceeded histone phosphorylation by at least a factor or two. Hypophysectomy markedly increased protamine phosphorylation in the presence or absence of saturating amounts of cyclic AMP. In contrast, hypophysectomy only slightly increased cyclic AMP independent phosphorylation of histone. These results could not be amounted for by differences in ATPase or protein phosphase activities. Cortisone (2 mg/day x 3) decreased total protein kinase activity in livers of hypophysectomized rats when protamine was substrate, but had no effect on the total activity toward histone. Growth hormone (100 mug/day x 3) significantly increased histone, but not protamine phosphorylation in livers of hypophysectomized rats. Administration of 5 mug of triiodothyonine/day to hypophysectomized rats also markedly increased the phosphorylation of histone, but not protamine when saturating amounts of cyclic AMP were present. These results support the hypothesis that liver may contain more than one type of protein kinase activity and that the different protein kinase activities can be separately affected by hormones. Such control distal to cyclic AMP might allow selective modulation of cyclic AMP-dependent processes in cells which carry out more than one such process.  相似文献   

14.
The properties of cyclic AMP-dependent protein kinase I isolated from rabbit reticulocytes were further investigated. The enzyme catalyzes the phosphorylation of histone in the presence of ATP and Mg2+ and this reaction is stimulated by cyclic AMP. The pH optimum of the reaction was between 8.5 and 9.0, when assayed in the presence of cyclic AMP. No distinct pH optimum was observed in the absence of the cyclic nucleotide. The Km values for ATP appeared to be very similar whether it was determined in the presence (Km = 1.7 × 10−4m) or absence (Km = 2.5 × 10−4m) of cyclic AMP. The rate of heat inactivation of the catalytic activity and the cyclic AMP binding activity of kinase I were found to be dependent on the presence of Mg2+, ATP, and/or cyclic AMP. In the presence of cyclic AMP, the rate of inactivation of the catalytic activity of kinase I at 53 ° was accelerated. On the other hand, the cyclic AMP binding activity appeared to be protected from heat inactivation by the cyclic nucleotide. When both ATP and Mg2+ were present in the heating mixture, no loss of catalytic and binding activities of kinase I were observed even up to 8 min of heating at 53 °. The cyclic AMP binding activity of kinase I was almost completely inhibited by mercuric acetate at a concentration of 1 mm, while the loss in catalytic activity was only 50%. These results substantiate our previous observation that kinase I contains two nonidentical subunits, a catalytic subunit and a cyclic AMP binding subunit.  相似文献   

15.
For the first time, to our knowledge, a nucleoside diphosphate kinase (NDPK) has been purified from plant mitochondria (Pisum sativum L.). In intact pea leaf mitochondria, a 17.4-kDa soluble protein was phosphorylated in the presence of EDTA when [gamma-32P]ATP was used as the phosphate donor. Cell fractionation demonstrated that the 17.4-kDa protein is a true mitochondrial protein, and the lack of accessibility to EDTA of the matrix compartment in intact mitochondria suggested it may have an intermembrane space localization. The 17.4-kDa protein was purified from mitochondrial soluble proteins using ATP-agarose and anion exchange chromatography. Amino-acid sequencing of two peptides, resulting from a trypsin digestion, revealed high similarity with the conserved catalytic phosphohistidine site and with the C-terminal of NDPKs. Acid and alkali treatments of [32P]-labelled pea mitochondrial NDPK indicated the presence of acid-stable as well as alkali-stable phosphogroups. Thin-layer chromatography experiments revealed serine as the acid-stable phosphogroup. The alkali-stable labelling probably reflects phosphorylation of the conserved catalytic histidine residue. In phosphorylation experiments, the purified pea mitochondrial NDPK was labelled more heavily on serine than histidine residues. Furthermore, kinetic studies showed a faster phosphorylation rate for serine compared to histidine. Both ATP and GTP could be used as phosphate donor for histidine as well as serine labelling of the pea mitochondrial NDPK.  相似文献   

16.
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637--6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to 'Type I' and 'Type II' cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218--225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.  相似文献   

17.
The stoichiometry of cyclic AMP binding protein to cyclic AMP in sporulating cells of Blastocladiella emersonii and the resistance of protein-bound cyclic AMP to enzyme-catalyzed hydrolysis suggest that the distribution of cyclic AMP between free and protein-bound pools is an important factor in cyclic AMP metabolism. Most but not all of the cyclic AMP binding protein in sporulating cells is associated with a cyclic AMP-dependent protein kinase.  相似文献   

18.
Adenosine 3',5'-cyclic monophosphate (cyclic AMP) and its 8-methylthio derivative stimulate the incorporation of 32P into proteins endogenous to a homogenate of rat caudate nucleus when 4 micrometer [gamma-32P] ATP is used as substrate. Higher concentrations of ATP reduced the effect of the cyclic nucleotide until at 400 micrometer no significant increase in protein phosphorylation was seen. Incubation of the homogenate with 400 micron ATP and 100 micron dopamine resulted in an approx. 2-fold increase in cyclic AMP but did not alter caudate protein phosphorylation suggesting that the catecholamine could not stimulate protein phosphorylation under the experimental conditions used in the present study.  相似文献   

19.
When a plasma membrane preparation isolated from rat liver was incubated with [gamma-32P]ATP and Mg2+, protein-bound 32P increased rapidly, followed by a gradual decrease. The time course suggested the existence of membrane-bound kinase(s) and phosphatase(s) phosphorylating and dephosphorylating endogenous proteins. The extent of phosphorylation was not affected by inclusion of cyclic AMP in the reaction mixture. The extent of the maximum phosphorylation was dependent on membrane concentration, owing to rapid hydrolysis of ATP by the membrane-bound ATPase activity. Thus, phosphorylation proceeded further on repeated addition of ATP. Both phosphorylation and dephosphorylation were stimulated by Mg2+, an effective rate of phosphorylation being obtained at 15 mM. Pi up to 20 mM stimulated phosphorylation with little effect on the rate of dephosphorylation. At higher phosphate concentrations, the maximum 32P-incorporation decreased again, and at 100 mM, dephosphorylation was prevented significantly. Autoradiography after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea revealed six main phosphorylated bands, two of which (Band 3 and 5) were partly extractable with 1 M NaCl. In the presence of 100 mM Pi, very strong phosphorylation of Band 5 (about 23,000 daltons) was noted, and a new strongly labeled band (Band P, about 20,000 daltons) was observed. It was concluded that the phosphoproteins in the membrane may be turned over at different rates and high concentrations of Pi may affect the turnover rate of some phosphoproteins, probably through interference with the phosphatase.  相似文献   

20.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号