首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
By mediating the Ca2+ influx that triggers exocytotic fusion, Ca2+ channels play a central role in a wide range of secretory processes. Ca2+ channels consist of a complex of protein subunits, including an 1 subunit that constitutes the voltage-dependent Ca2+-selective membrane pore, and a group of auxiliary subunits, including β, γ, and 2–δ subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca2+ channels are constituted by different combinations of 1 subunits (of which 10 have been identified) and auxiliary subunits, particularly β (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca2+ channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca2+ channel structure and function in exocytotic secretion. We discuss Ca2+ channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca2+ channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca2+ channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.  相似文献   

3.
Summary The synaptic complexes of the rat pinealocytes are neither cholinergic nor adrenergic. In the synaptic vesicles, a neurotransmitter carrier substance of lipid nature reacting with OsO4-Zn I2 mixture (similar to that present in both cholinergic and adrenergic vesicles) was not found.In addition, there were no indications of glucose-6-phosphatase or thiamine-pyrophosphatase activity in the synaptic vesicles. Thus, it appears that the synaptic vesicles do not originate from the rough or smooth endoplasmic reticulum.The synaptic ribbons do not contain carbohydrates, are of protein nature and possess some chemical resemblance to microtubules and microtubular bouquets.Appropriate ultracytochemical reactions have not shown detectable quantities of sodium and calcium ions in pinealocyte synaptic complexes.Grateful acknowledgment is made to Mr. P.-A. Milliquet for technical assistance and to Dr. T. Jalanti (C.M.E., Lausanne) for his help in the use of the X-ray microanalyser.Dedicated to Professor Dr. med. G. Töndury on the occasion of his 70th birthday.  相似文献   

4.
5.
6.
In the vertebrate retina the presence of synaptic ribbons (SRs) is well documented in two sites only, viz., in photoreceptor axon terminals in the outer plexiform layer and in bipolar cell axons in the inner plexiform layer. The present paper reports the presence of non-photoreceptor SRs in the outer plexiform layer of cattle and mouse, where they were seen in small numbers in thin cell processes near cone pedicles of light-adapted animals. They were never seen near rod spherules. Quantitative data obtained in mice killed at different time-points revealed that the SRs under consideration increased in number during day time and were absent during the dark phase. Moreover, under high light intensity of 10000 lux they were more frequent in number compared to 100-lux-exposed animals. It is concluded that the cell processes revealing the temporary presence of SRs are processes of flat bipolar cells which may provide a feedback to cones during the light phase.  相似文献   

7.
8.
Diurnal morphological changes in synaptic ribbons of the rod cells of the turtle were revealed by electron microscopy with serial ultrathin sections. Freshwater turtles (Pseudemys) were maintained under the light-dark cycle with lights on from 0600 to 1800 hr. Retinas around the posterior pole of the eyeball were fixed in 2.5% glutaraldehyde and 1% osmium tetroxide. In total, 124 rod cells and several hundred cone cells were observed. At 0000 (midnight), ribbons are situated close to and perpendicular to the presynaptic membrane. They show single stick-shaped profiles on thin section. From midnight toward noon, the stick-shaped ribbons grow into large multilayered ribbon complexes composed of several sticks arranged parallel to each other. Then, the ribbon complexes begin to disintegrate into irregular fragments from noon toward night. At 1900, aggregates of rounded or club-shaped ribbons are predominant.  相似文献   

9.
10.
11.
Summary Synaptic ribbons in the pineal organ of the goldfish were examined electron microscopically with particular attention to their topography. These structures were formed of parallel membranes, which were poorly preserved with OsO4 fixation and could be extracted from thin sections with pronase indicating their proteinaceous nature. Synaptic ribbons were closely apposed to the plasma membrane bordering dendrites of ganglion cells, but were also related to processes of both photoreceptor and supportive cells. Their close proximity to invaginations of the plasma membrane and portions of the endoplasmic reticulum suggest that they are involved in the turnover of cytoplasmic membranes. Tubular and spherical organelles of unknown function are also described.  相似文献   

12.
Summary Synaptic ribbons (SR), functionally enigmatic structures of mammalian pinealocytes, were studied electron microscopically with regard to number, intracellular localization and topographical relationships, both under normal and experimental conditions. Pineal glands of guinea-pigs serving as controls contained 1.75 ribbon fields/unit area in the males and 2.58 in the females. In animals subjected to continuous illumination for 64 days the number of ribbon fields increased 20-fold in the males and 9-fold in the females. Continuous darkness (26 to 70 days) had varying effects; in some animals SR increased either strongly or moderately, in others they appeared unchanged. Under continuous illumination a higher percentage of ribbon fields bordered the cell membrane than in the controls. Moreover, paired ribbon fields occurred. The topographical analysis revealed that 98 % of the ribbon fields bordering the cell membrane lay opposite another pinealocyte and the remainder opposite nerve fibres, blood vessels and collagenous fibres. It is suggested that SR of mammalian pinealocytes do not represent non-functioning phylogenetic relics but true organelles possibly involved in coupling adjacent pinealocytes functionally.This study was supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn.  相似文献   

13.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

14.
15.
16.
The bacterial flagellum and the virulence-associated injectisome are complex, structurally related nanomachines that bacteria use for locomotion or the translocation of virulence factors into eukaryotic host cells. The assembly of both structures and the transfer of extracellular proteins is mediated by a unique, multicomponent transport apparatus, the type III secretion system. Here, we discuss the significant progress that has been made in recent years in the visualization and functional characterization of many components of the type III secretion system, the structure of the bacterial flagellum, and the injectisome complex.  相似文献   

17.
18.
Summary In baboons kept under controlled lighting conditions, microtubules (MT) are readily seen in the perikaryal cytoplasm and in the perivascular processes of pinealocytes. A significant increase in the number of MT, single synaptic ribbons (SR) and the formation of synaptic ribbon fields (RF, i.e. organelles which consist of multiple dense rodlets or plates, and vesicles), occur during the dark phase of a circadian light-dark cycle. MT may act as tracks for the oriented flow of vesicles derived from the smooth endoplasmic reticulum, to cytoplasmic sites where RF are being formed. The origin of the dense rodlets of RF remains unknown. Structural differences between SR and RF indicate that the latter organelles are not directly involved in impulse propagation between adjacent baboon pinealocytes. RF may function as storage organelles for some of the pineal secretory products which are formed in large amounts during the dark phase.  相似文献   

19.
Summary The effects of melatonin on synaptic ribbons (SR) in pinealocytes of the Chinese hamster (Cricetulus griseus) were examined. SR were classified into types 1, 2 and 3, which appear as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index (SR index) was determined for the three types. Administration of two doses of 1.5 mg/kg melatonin at noon and 3 p.m. causes an increase in the type-1 and type-2 SR indices 3 h after the second injection in hamsters kept under alternating light and dark conditions (lights on from 7 a.m. to 7 p.m.). Likewise, in animals that are exposed to extended light for 6 h and receive two doses of melatonin at 7 p.m. and 10 p.m., an increase in the type-1 and type-2 SR indices occurs 3 h after the second injection. The increase in the type-2 SR index induced by melatonin administration to hamsters exposed to extended light is greater than the increase in the type-1 SR index under the same experimental conditions. Type-2 SR index, but not type-1 SR index, increases following bilateral superior cervical ganglionectomy. An increase in type-1 and type-2 SR indices occurs at 6 p.m. in ganglionectomized animals administered two doses of melatonin 6 h (noon) and 3 h (3 p.m.) before the time of sacrifice. No significant change is observed in type-3 SR index in animals subjected to any of the above treatments. The results indicate that exogenous melatonin may act directly on pinealocytes of the Chinese hamster to cause an increase in size and/or number of the type-1 and type-2 SR. Type 3-SR may have a role different from that of type-1 and type-2 SR; type-1 and type-2 SR may be functionally related.  相似文献   

20.
Alpha-synuclein: between synaptic function and dysfunction   总被引:2,自引:0,他引:2  
Alpha-synuclein belongs to a family of vertebrate proteins, encoded by three different genes: alpha, ss, and gamma. The protein has become of interest to the neuroscience community in the last few years after the discovery that a mutation in the alpha-synuclein gene is associated with familial autosomal-dominant early-onset forms of Parkinson Disease. However, it is not yet clear how the protein is involved in the disease. Several studies have suggested that alpha-synuclein plays a role in neurotransmitter release and synaptic plasticity. This hypothesis might help elucidate how alpha-synuclein malfunctioning contributes to the development of a series of disorders known as synucleinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号