首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coli O157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 10(4) cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 10(2) and 10(3) cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coli O157:H7 in broth cultures.  相似文献   

2.
Rapid, direct methods are needed to assess active bacterial populations in water and foods. Our objective was to determine the efficiency of bacterial detection by immunomagnetic separation (IMS) and the compatibility of IMS with cyanoditolyl tetrazolium chloride (CTC) incubation to determine respiratory activity, using the pathogen Escherichia coli O157:H7. Counterstaining with a specific fluorescein-conjugated anti-O157 antibody (FAb) following CTC incubation was used to allow confirmation and visualization of bacteria by epifluorescence microscopy. Broth-grown E. coli O157:H7 was used to inoculate fresh ground beef (<17% fat), sterile 0.1% peptone, or water. Inoculated meat was diluted and homogenized in a stomacher and then incubated with paramagnetic beads coated with anti-O157 specific antibody. After IMS, cells with magnetic beads attached were stained with CTC and then an anti-O157 antibody-fluorescein isothiocyanate conjugate and filtered for microscopic enumeration or solid-phase laser cytometry. Enumeration by laser scanning permitted detection of ca. 10 CFU/g of ground beef or <10 CFU/ml of liquid sample. With inoculated meat, the regression results for log-transformed respiring FAb-positive counts of cells recovered on beads versus sorbitol-negative plate counts in the inoculum were as follows: intercept = 1.06, slope = 0.89, and r2 = 0. 95 (n = 13). The corresponding results for inoculated peptone were as follows: intercept = 0.67, slope = 0.88, and r2 = 0.98 (n = 24). Recovery of target bacteria on beads by the IMS-CTC-FAb method, compared with recovery by sorbitol MacConkey agar plating, yielded greater numbers (beef, 6.0 times; peptone, 3.0 times; water, 2.4 times). Thus, within 5 to 7 h, the IMS-CTC-FAb method detected greater numbers of E. coli O157 cells than were detected by plating. The results show that the IMS-CTC-FAb technique with enumeration by either fluorescence microscopy or solid-phase laser scanning cytometry gave results that compared favorably with plating following IMS.  相似文献   

3.
Simple, rapid methods for the detection and enumeration of specific bacteria in water and wastewater are needed. We have combined incubation using cyanoditolyl tetrazolium chloride (CTC) to detect respiratory activity with a modified fluorescent-antibody (FA) technique, for the enumeration of specific viable bacteria. Bacteria in suspensions were captured by filtration on nonfluorescent polycarbonate membranes that were then incubated on absorbent pads saturated with CTC medium. A specific antibody conjugated with fluorescein isothiocyanate was reacted with the cells on the membrane filter. The membrane filters were mounted for examination by epifluorescence microscopy with optical filters designed to permit concurrent visualization of fluorescent red-orange CTC-formazan crystals in respiring cells which were also stained with the specific FA. Experiments with Escherichia coli O157:H7 indicated that both respiratory activity and specific FA staining could be detected in logarithmic- or stationary-phase cultures, as well as in cells suspended in M9 medium or reverse-osmosis water. Following incubation without added nutrients in M9 medium or unsterile reverse-osmosis water, the E. coli O157:H7 populations increased, although lower proportions of the organisms reduced CTC. Numbers of CTC-positive, FA-positive cells compared with R2A agar plate counts gave a strong linear regression (R = 0.997). Differences in injury did not appear to affect CTC reduction. The procedure, which can be completed within 3 to 4 h, has also been performed successfully with Salmonella typhimurium and Klebsiella pneumoniae.  相似文献   

4.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at -20 degrees C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25 degrees C for 2 h and then selectively enriched at 42 degrees C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25 degrees C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

5.
The survival of unheated and heat-stressed (52 degrees C, 30 min) cells of Escherichia coli O157:H7 inoculated into tryptic soy broth (TSB) adjusted to various pHs (6.0, 5.4, and 4.8) with lactic acid and various water activities (a(w)s) (0.99, 0.95, and 0.90) with NaCl and incubated at 5, 20, 30, and 37 degrees C was studied. The performance of tryptic soy agar (TSA), modified sorbitol MacConkey agar (MSMA), and modified eosin methylene blue agar in supporting colony development of incubated cells was determined. Unheated cells of E. coli O157:H7 grew to population densities of 10(8) to 10(9) CFU ml-1 in TSB (pHs 6.0 and 5.4) at an a(w) of 0.99. Regardless of the pH and a(w) of TSB, survival of E. coli O157:H7 was better at 5 degrees C than at 20 or 30 degrees C. At 30 degrees C, inactivation or inhibition of growth was enhanced by reduction of the a(w) and pH. A decrease in the a(w) (0.99 to 0.90) of TSB in which the cells were heated at 52 degrees C for 30 min resulted in a 1.5-log10 reduction in the number of E. coli O157:H7 cells recovered on TSA; pH did not significantly affect the viability of cells. Recovery was significantly reduced on MSMA when cells were heated in TSB with reduced pH or a(w) for an increased length of time. With the exception of TSB (a(w), 0.90) incubated at 37 degrees C, heat-stressed cells survived for 24 h in recovery broth. TSB (a(w), 0.99) at pH 6.0 or 5.4 supported growth of E. coli O157:H7 cells at 20 or 37 degrees C, but higher numbers of heated cells survived at 5 or 20 degrees C than at 37 degrees C. The ability of unheated and heat-stressed E. coli O157:H7 cells to survive or grow as affected by the a(w) of processed salami was investigated. Decreases of about 1 to 2 log10 CFU g-1 occurred soon after inoculation of salami (pHs 4.86 and 4.63 at a(w)s of 0.95 and 0.90, respectively). Regardless of the physiological condition of the cells before inoculation into processed salami at an a(w) of either 0.95 or 0.90, decreases in populations occurred during storage at 5 or 20 degrees C for 32 days. If present at < or = 100 CFU g-1, E. coli O157:H7 would unlikely survive storage at 5 degrees C for 32 days. However, contamination of salami with E. coli O157:H7 at 10(4) to 10(5) CFU g-1 after processing would pose a health risk to consumers for more than 32 days if storage were at 5 degrees C. Regardless of the treatment conditions, performance of the media tested for the recovery of E. coli O157:H7 cells followed the order TSA > modified eosin methylene blue agar > MSMA.  相似文献   

6.
The Oldman River watershed in southern Alberta, Canada, is an extensively irrigated region in which intensive agricultural practices have flourished. Concern over water quality in the basin has been expressed because of high levels of enteric disease indigenous to the region. To address these concerns, we conducted a 2-year study to estimate the prevalence of Escherichia coli O157:H7 and Salmonella spp. in surface water within the basin. This study is the first of its kind to identify E. coli O157:H7 repeatedly in surface water collected from a Canadian watershed. Prevalence of E. coli O157:H7 and Salmonella spp. in water samples was 0.9% (n = 1,483) and 6.2% (n = 1,429), respectively. While data examined at a regional level show a relationship between high livestock density and high pathogen levels in southern Alberta, statistical analysis of point source data indicates that predicted manure output from bovine, swine, and poultry feeding operations was not directly associated with either Salmonella spp. or E. coli O157:H7 prevalence. However, geography and weather variables, which are likely to influence bacterial runoff, were not considered in this model. We also postulate that variations in time, amount, and frequency of manure application onto agricultural lands may have influenced levels of surface-water contamination with these bacterial pathogens.  相似文献   

7.
Escherichia coli O157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate of E. coli O157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction of E. coli O157:H7 Tn7gfp transformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), both E. coli O157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (10(9) and 10(6) E. coli O157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log(10) cells but did not detect culturable cells. These findings indicate that E. coli O157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.  相似文献   

8.
Attaching-effacing (A/E) lesions following natural and experimental infection with Escherichia coli O157:H7 have been seen in neonatal and 3-4-month-old weanling but not older cattle. To test the hypothesis that the adult bovine large intestinal epithelium is resistant to the development of A/E lesions, colonic and rectal mucosal tissue explants from 18-month-old steers were inoculated with E. coli O157:H7 and examined. Epithelial cells of inoculated explants developed A/E lesions at the bacterial attachment sites, providing evidence that the large intestinal mucosal epithelium may be a site of infection that contributes to carriage of E. coli O157:H7 in adult cattle.  相似文献   

9.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

10.
We report here the use of immunomagnetic (IM) electrochemiluminescence (ECL) for quantitative detection of Esherichia coli O157:H7 in water samples following enrichment in minimal lactose broth (MLB). IM beads prepared in-house with four commercial anti-O157 monoclonal antibodies were compared for efficiency of cell capture. IM-ECL responses for E. coli O157:H7 (strain SEA13B88) were similar for all four commercial anti-O157 LPS monoclonal antibodies. The ECL signal was linearly correlated with E. coli O157:H7 cell concentration, indicating a constant ECL response per cell. Twenty-two strains of E. coli O157:H7 or O157:NM gave comparable ECL signals using IM beads prepared in-house. To assess the potential for interference from background bacteria in MLB-enriched water samples, 10(4) cells of E. coli O157:H7 (strain SEA13B88) were added to enriched samples prior to analysis. There was considerable variability in recovery of E. coli O157:H7 cells; net ECL signals ranged from 1% to 100% of expected values (i.e., percent inhibition from 0% to 99%). Cultures of Klebsiella pneumoniae, Klebsiella oxytoca, and Enterobacter cloacae, subsequently isolated from MLB-enriched water samples via IM separation (IMS), were observed to interfere with the binding of E. coli O157:H7 cells to IM beads. Recoveries of 10(4) E. coli O157:H7 cells were 相似文献   

11.
A non-verotoxin-producing isolate of Escherichia coli O157:H7 was inoculated at final concentrations of 10(3) or 10(6) ml-1 into natural non-carbonated mineral water (MW), sterile natural mineral water (SMW) and sterile distilled deionized water (SDDW) and stored at 15 degrees C for 10 weeks. Samples were examined every 7 d for the presence of E. coli O157:H7 using a resuscitative/selective agar procedure. The MW samples were also plated onto a non-selective agar, R2A, to enumerate E. coli O157:H7 and the autochthonous flora. There was a significant difference in the survival of E. coli O157:H7 (10(3) ml-1 inoculum) between the MW and the SDDW at time periods 0, 7, 14 (P < 0.005) 21, 28, 35 (P < 0.001) and 42 d (P < 0.05) and between the MW and the SMW at time periods 7, (P < 0.05) 14, 21 (P < 0.005) 28 (P < 0.01) and 35 d (P < 0.05), with the pathogen surviving longest in the MW samples. In contrast, at 10(6) ml-1, no significant differences in the survival of E. coli O157:H7 were observed between the water types. The presence of E. coli O157:H7 (10(3) ml-1) in the MW samples did not have an antagonistic effect on the recovery of the autochthonous flora. Transmission electron microscopy analysis demonstrated that the E. coli O157:H7 cells lyse during storage, releasing their contents into the surrounding environment. These substances may have been utilized by the autochthonous flora and thereby explain why the numbers of flora recovered from the inoculated MW samples were higher than those recovered from the uninoculated samples.  相似文献   

12.
Outbreaks of Escherichia coli O157:H7 infections have been linked increasingly to leafy greens, particularly to lettuce. We present here the first evidence that this enteric pathogen can multiply on the leaves of romaine lettuce plants. The increases in population size of E. coli O157:H7 in the phyllosphere of young lettuce plants ranged from 16- to 100-fold under conditions of warm temperature and the presence of free water on the leaves and varied significantly with leaf age. The population size was consistently ca. 10-fold higher on the young (inner) leaves than on the middle leaves. The growth rates of Salmonella enterica and of the natural bacterial microflora were similarly leaf age dependent. Both enteric pathogens also achieved higher population sizes on young leaves than on middle leaves harvested from mature lettuce heads, suggesting that leaf age affects preharvest as well as postharvest colonization. Elemental analysis of the exudates collected from the surfaces of leaves of different ages revealed that young-leaf exudates were 2.9 and 1.5 times richer in total nitrogen and carbon, respectively, than middle-leaf exudates. This trend mirrored the nitrogen and carbon content of the leaf tissue. Application of ammonium nitrate, but not glucose, to middle leaves enhanced the growth of E. coli O157:H7 significantly, suggesting that low nitrogen limits its growth on these leaves. Our results indicate that leaf age and nitrogen content contribute to shaping the bacterial communities of preharvest and postharvest lettuce and that young lettuce leaves may be associated with a greater risk of contamination with E. coli O157:H7.  相似文献   

13.
AIMS: To evaluate the antimicrobial activity in peptone yeast extract glucose (PYG) broth and ultra-high temperature (UHT) milk of bovine lactoferrin hydrolysate (LFH) with pepsin against the foodborne pathogens Salmonella Stanley, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. METHODS AND RESULTS: The LFH was suspended in PYG and the minimum inhibitory concentration for each pathogen determined. The LFH was also suspended in UHT milk adjusted to pH 4 or 7, samples incubated at 4 or 35 degrees C and the change in bacterial cell population determined. Experiments in UHT milk were conducted using L. monocytogenes and E. coli O157:H7. At pH 4 LFH reduced the population of E. coli O157:H7 and L. monocytogenes by approx. 2 log; however, only E. coli O157:H7 was inhibited in samples adjusted to pH 7. The addition of EDTA (10 mg ml(-1)) to UHT milk supplemented with LFH did not markedly influence the growth of E. coli O157:H7 or L. monocytogenes. CONCLUSIONS: The results suggest that, under low pH and refrigeration conditions, LFH can limit the growth or reduce the population of pathogenic bacteria in a dairy product. SIGNIFICANCE AND IMPACT OF THE STUDY: Natural preservatives that are active against Gram-negative and Gram-positive bacteria are desirable to the food industry. This study demonstrates that LFH is effective in a complex food system. Moreover, the LFH used was not purified, making its use by industry more attractive.  相似文献   

14.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 +/- 0.1) or in water (pH 7.2 +/- 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25 degrees C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4 degrees C and lowest at 25 degrees C. The pathogen survived without growth in water washings at 4 and 10 degrees C, while it grew by 0.8 to 2.7 log cycles at 15 and 25 degrees C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10 degrees C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25 degrees C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15 degrees C > 10 degrees C > 4 degrees C, while at 25 degrees C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15 degrees C may maintain a higher acid resistance than when acid habituated at 4 degrees C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

15.
In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coli O157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 104 cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 102 and 103 cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coli O157:H7 in broth cultures.  相似文献   

16.
The pH (i.e., 5.5, 5.75, 6.0, 6.25, 6.5, 6.75, 7.0, and 7.25) effect on Escherichia coli O157:H7 in an artificial rumen model was investigated. Eight fermenters were inoculated with bovine rumen fluid and were supplied with a diet (75 g of dry matter daily in 12 equal portions [every 2 hr]) containing similar forage-to-concentrate ratio. After an adaptation period (i.e., 3 days for adjusting the rumen fluid [pH 6.2] microbial population to the test pH and 4 days for adjustment to the diet at the test pH), each fermenter was inoculated with 10(9) cells of E. coli O157:H7. Samples were collected hourly for 12 hr and every 2 hr for an additional 12 hr and were analyzed by flow cytometer. E. coli O157:H7 could not be quantified after 24 hr, and detection was only possible after enrichment. Because the pathogen could not be detected 5 days postinoculation (i.e., Day 13), the fermenters were reinoculated with E. coli O157:H7 on Days 17 and 22. E. coli O157:H7 numbers decreased from 10(6) to 10(4)/ml of fermenter contents in a quadratic (P < 0.05) fashion over the 24-hr sampling period, and the rate of reduction was slower (P < 0.05) for pH 7.0 than for other pH treatments. Results suggested that E. coli O157:H7 population were decreased by competitive exclusion and were not affected by culture pH.  相似文献   

17.
Consumption of fresh and fresh-cut fruits and vegetables contaminated with Escherichia coli O157:H7 has resulted in hundreds of cases of illness and, in some instances, death. In this study, the influence of cell surface structures of E. coli O157:H7, such as flagella, curli fimbriae, lipopolysaccharides, or exopolysaccharides, on plant defense responses and on survival or colonization on the plant was investigated. The population of the E. coli O157:H7 ATCC 43895 wild-type strain was significantly lower on wild-type Arabidopsis plants than that of the 43895 flagellum-deficient mutant. The population of the E. coli O157:H7 43895 flagellum mutant was greater on both wild-type and npr1-1 mutant (nonexpressor of pathogenesis-related [PR] genes) plants and resulted in less PR gene induction, estimated based on a weak β-glucuronidase (GUS) signal, than did the 43895 wild-type strain. These results suggest that the flagella, among the other pathogen-associated molecular patterns (PAMPs), made a substantial contribution to the induction of plant defense response and contributed to the decreased numbers of the E. coli O157:H7 ATCC 43895 wild-type strain on the wild-type Arabidopsis plant. A curli-deficient E. coli O157:H7 86-24 strain survived better on wild-type Arabidopsis plants than the curli-producing wild-type 86-24 strain did. The curli-deficient E. coli O157:H7 86-24 strain exhibited a GUS signal at a level substantially lower than that of the curli-producing wild-type strain. Curli were recognized by plant defense systems, consequently affecting bacterial survival. The cell surface structures of E. coli O157:H7 have a significant impact on the induction of differential plant defense responses, thereby impacting persistence or survival of the pathogen on plants.  相似文献   

18.
The influence of nutrients in wastewater from dairy lagoons on the survival of Escherichia coli O157:H7 was monitored. Initially, the survival of E. coli O157:H7 in wastewater from which the competing native organisms had been removed by filter sterilization or autoclaving was compared with that in wastewater from which competing organisms had not been removed. Numbers of E. coli O157:H7 or E. coli ONT (O-nontypeable):H32 cells declined rapidly in filter-sterilized water and exhibited a slower decline in nonsterile water, while the organisms proliferated in autoclaved water. Subsequently, the growth of E. coli O157:H7 strains was monitored in 300 mul of Luria-Bertani (LB) broth supplemented with incremental proportions of filter-sterilized wastewater. E. coli O157:H7 and E. coli ONT:H32 strains failed to grow in filter-sterilized wastewater, and their growth was reduced incrementally with wastewater supplementation of LB broth. Consequently, the influence of organic extracts of wastewater on the growth of E. coli O157:H7 and E. coli ONT:H32 in reduced-strength LB was monitored, followed by scale-up tests in wastewater. Acidic and basic extracts inhibited growth of both strains, while the neutral aqueous extract improved growth. However, a scale-up with a threefold increase in the acidic components supplementing the wastewater did not result in any additional decline in numbers of E. coli O157:H7 cells. When protected inside a 300-kDa dialysis tube and exposed to diffusible components, E. coli O157:H7 survived longer, with a decimal reduction time of 18.1 days, compared to 3.5 days when inoculated directly into wastewater. Although wastewater can potentially provide nutrients to naturally occurring human pathogens, the chemical components, protozoa, and coliphages in wastewater can inhibit the growth of freshly introduced pathogens from manure.  相似文献   

19.
AIMS: The goal of this study was to determine whether any specific bacterial processes (biochemical or genetic) or cell surface moieties were required for the interaction between Escherichia coli O157:H7 and lettuce plant tissue. METHODS AND RESULTS: Escherichia coli O157:H7 and Fluospheres (fluorescent polystyrene microspheres) were used in experiments to investigate interactions with lettuce. Fluospheres were used as they are a non-biological material, of similar size and shape to a bacterial cell, but lack bacterial cell surface moieties and the ability to respond genetically. Live and glutaraldehyde-killed E. coli O157:H7 attached at levels of c. 5.8 log(10) cells per cm(2) following immersion of lettuce pieces into a suspension containing c. 8 log(10) CFU ml(-1). In a separate experiment, numbers of bacteria or Fluospheres associated with lettuce decreased by c. 1.5 log cm(-2) following a 1-min wash. Exposure times of 1 min, 1 h, or 6 h had little effect on the level of attachment for Fluospheres, and live or killed cells of E. coli O157:H7 to lettuce tissue. SIGNIFICANCE: These results indicate that bacterial processes and cell surface moieties are not required for the initial interaction of E. coli O157:H7 to lettuce plant tissue.  相似文献   

20.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号