共查询到20条相似文献,搜索用时 0 毫秒
1.
Nesmeyanova MA 《Biochemistry. Biokhimii?a》2000,65(3):309-314
This review summarizes the results of our study of polyphosphate and enzymes of polyphosphate metabolism in E. coli and their regulation by exogenous orthophosphate and other physiological and genetic factors. 相似文献
2.
A previously developed dynamic model of the Escherichia coli Pho regulon was extended to investigate the effect of polyphosphate synthesis and degradation on this control system. Differential equations for ATP and polyphosphate were formulated, and the model was applied to the growth of cells containing the ppk and ppx genes under control of separate, inducible promoters. In agreement with recent experimental observations, the degradation of polyphosphate by PPX during a period of phosphate limitation could repress the phosphate-starvation response. This is attributed to the release of phosphate from the cell into the periplasm, where it can be detected by the external phosphate sensor. A segregated model was then developed to account for differences in K(I), the dissociation constant for the repression complex, among cells of the population. Since K(I) is the key parameter in determining whether the Pho response is induced or repressed at a particular surface phosphate concentration, this permitted the induction of some cells while others remained repressed. The induction profiles resulting from the population-averaged values more closely matched experimental results than did those with the nonsegregated model. 相似文献
3.
Abstract Cadmium ions are bacteriocidal, resulting in exponential killing that starts immediately after exposure. We have shown that pretreatment with sublethal concentrations of cadmium induces tolerance. Protection against cadmium killing can also be obtained by preincubation at elevated temperatures, known to induce the heat-shock response. However, in contrast to pretreatment at elevated temperatures, exposure to sublethal cadmium concentrations does not induce thermotolerance. 相似文献
4.
The effect of intracellular polyphosphate on the phosphate-starvation response in Escherichia coli was studied by genetically manipulating the intracellular polyphosphate levels and by performing phosphate shifts on the genetically engineered strains. Strains that produced large quantities of polyphosphate and were able to degrade it induced the phosphate-starvation response to a lesser extent than wild-type strains, whereas strains that were unable to degrade a large intracellular polyphosphate pool induced the phosphate-starvation response to a greater extent than wild-type strains. These results have important implications for expression of heterologous genes under control of the phoA promoter. (c) 1996 John Wiley & Sons, Inc. 相似文献
5.
Polyphosphate metabolism plays an important role in the bioremediation of phosphate contamination in municipal wastewater, and may play a key role in heavy metal tolerance and bioremediation. However, little is known about the regulation of polyphosphate metabolism in microorganisms and its role in heavy metal toxicity. We have manipulated polyphosphate metabolism in Escherichia coli by overexpressing the genes for polyphosphate kinase (ppk) and for polyphosphatase (ppx) under control of their native promoters and inducible promoters. Overexpression of ppk results in high levels of intracellular polyphosphate, improved phosphate uptake, but no increase in tolerance to heavy metals. Overexpression of both ppk and ppx results in lower levels of intracellular polyphosphate, secretion of phosphate from the cell, and increased tolerance to heavy metals. Metabolic flux analysis indicates that the cell responds to increased flux through the PPK-PPX pathway by altering flux through the TCA cycle. 相似文献
6.
Altered cobalamin metabolism in Escherichia coli btuR mutants affects btuB gene regulation. 总被引:1,自引:6,他引:1
下载免费PDF全文

Synthesis of the Escherichia coli outer membrane protein BtuB, which mediates the binding and transport of vitamin B12, is repressed when cells are grown in the presence of vitamin B12. Expression of btuB-lacZ fusions was also found to be repressed, and selection for constitutive production of beta-galactosidase in the presence of vitamin B12 yielded mutations at btuR. The btuR locus, at 27.9 min on the chromosome map, was isolated on a 952-base-pair EcoRV fragment, and its nucleotide sequence was determined. The BtuR protein was identified in maxicells as a 22,000-dalton polypeptide, as predicted from the nucleotide sequence. Strains mutant at btuR had negligible pools of adenosylcobalamin but did convert vitamin B12 into other derivatives. Although btuB expression in a btuR strain could not be repressed by cyano- or methylcobalamin, it was repressed by adenosylcobalamin. Growth on ethanolamine as the sole nitrogen source requires adenosylcobalamin. btuR mutants grew on ethanolamine but were affected in the length of the lag period before initiation of growth, which suggested that an alternative route for adenosylcobalamin synthesis might exist. No mutations were found that conferred constitutive btuB expression in the presence of adenosylcobalamin. Other genes near btuR may also be involved in cobalamin metabolism, as suggested from the complementation behavior of strains generated by excision of the Tn10 element in btuR. These results indicated that the btuR product is involved in the metabolism of adenosylcobalamin and that this cofactor, or some derivative, controls btuB expression. 相似文献
7.
Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. 总被引:4,自引:1,他引:4
下载免费PDF全文

In earlier studies of genetic competence in Escherichia coli induced with calcium-containing buffers, a strong correlation was found between transformation efficiency and the formation of poly-beta-hydroxybutyrate/calcium polyphosphate (PHB/Ca2+/PPi) complexes in the plasma membranes. In this study, we replaced Ca2+ with one of a number of other cations--monovalent, divalent, and trivalent--and found significant numbers of transformants (transformation efficiency, > 10(5)/micrograms of pBR322 DNA) only when the cells had high levels of PHB/Ca2+/PPi and the medium contained at least one of the divalent cations Ca2+, Mn2+, Sr2+, or Mg2+. Cells with high levels of the complexes were not competent when the medium did not contain these cations, but the cations were also ineffectual when the cells had few complexes. Surprisingly, Mn, Sr, and Mg were not incorporated into the complexes in place of Ca. These results indicate that PHB/Ca2+/PPi complexes and the above-mentioned divalent cations each have essential but disparate roles in genetic competence. Moreover, the strong selectivity of PHB/PPi for Ca2+ suggests the binding sites in the complexes are ionophoretic. 相似文献
8.
9.
10.
Levels of several intermediary metabolites were measured in cells grown in acetate medium in order to test the hypothesis that the glyoxylate cycle is repressed by phosphoenolpyruvate (PEP). Wild-type cells had less PEP than either isocitrate dehydrogenase - deficient cells (which had greater isocitrate lyase activity than the wild type) or isocitrate dehydrogenase - deficient, citrate synthase-deficient cells (which are poorly inducible). Thus induction of the glyoxylate cycle is more complicated than a simple function of PEP concentration. No correlation between enzyme activity and the level of oxaloacetate, pyruvate, or citrate was found either. Citrate was synthesized in citrate synthase-deficient mutants, possibly via citrate lyase. 相似文献
11.
Escherichia coli metabolism in space. 总被引:1,自引:0,他引:1
Cultures of the bacterium Escherichia coli were grown in the orbiting Biocosmos 2044 satellite in order to evaluate the effects of the space environment--weightlessness and heavy particle radiation--on growth parameters and energy metabolism, which have previously been reported to be affected, and on induction of the SOS response, which reflects DNA damage to the cell. We found no differences between the flight samples and control ground cultures in the growth yield per gram of carbon, in mean cell mass (from which we deduce that the growth rate was unaltered) or in the level of expression of the SOS response. These observations indicate that free-growing bacterial cells do not expend significant energy fighting gravity and that cosmic radiation within a space capsule does not produce significant levels of DNA damage. 相似文献
12.
Enterohemorrhagic Escherichia coli (EHEC) strains were tested for their ability to survive in acid pH at 37 degrees C. No loss of viability was observed in an O157:H7 EHEC strain (ATCC 43895) at pH levels of 3.0 and 2.5 for at least 5 h. The level of acid tolerance of most EHEC isolates was very high, similar to that of Shigella flexneri strains. The acid tolerance was dependent on the growth phase and pH of the growth medium. 相似文献
13.
14.
15.
16.
Genetic manipulation of gibberellin metabolism in transgenic rice 总被引:16,自引:0,他引:16
Sakamoto T Morinaka Y Ishiyama K Kobayashi M Itoh H Kayano T Iwahori S Matsuoka M Tanaka H 《Nature biotechnology》2003,21(8):909-913
The 'green revolution' was fueled by the introduction of the semi-dwarf trait into cereal crop cultivars. The semi-dwarf cultivars--which respond abnormally to the plant growth hormone gibberellin (GA)--are more resistant to wind and rain damage and thus yield more grain when fertilized. To generate dwarf rice plants using a biotechnological approach, we modified the level of GA by overproduction of a GA catabolic enzyme, GA 2-oxidase. When the gene encoding GA 2-oxidase, OsGA2ox1, was constitutively expressed by the actin promoter, transgenic rice showed severe dwarfism but failed to set grain because GA is involved in both shoot elongation and reproductive development. In contrast, OsGA2ox1 ectopic expression at the site of bioactive GA synthesis in shoots under the control of the promoter of a GA biosynthesis gene, OsGA3ox2 (D18), resulted in a semi-dwarf phenotype that is normal in flowering and grain development. The stability and inheritance of these traits shows the feasibility of genetic improvement of cereal crops by modulation of GA catabolism and bioactive GA content. 相似文献
17.
Linear polyphosphate chains have been found to play a key role in bacterial responses to stresses and nutritional depletion, and are necessary for host infection of various pathogens. Polyphosphate kinase (PPK) is a critical enzyme responsible for polyphosphate synthesis in bacteria. PPK knockout mutations in several Gram-negative pathogens identify PPK as an ideal drug target for the development of a new class of antibacterial drugs. To reveal the catalytic mechanism and provide a structural basis for drug discovery, we have purified and crystallized full-length Escherichia coli PPK and its complex with AMP-PNP. The crystals diffract to a resolution of 2.5A and belong to the space group P4(2)2(1)2 with unit-cell parameters a=152.0, b=152.0, and c=150.0 A. Crystal structure of PPK is being determined by the Se-Met MAD experiment. 相似文献
18.
Billi D Wright DJ Helm RF Prickett T Potts M Crowe JH 《Applied and environmental microbiology》2000,66(4):1680-1684
Recombinant sucrose-6-phosphate synthase (SpsA) was synthesized in Escherichia coli BL21DE3 by using the spsA gene of the cyanobacterium Synechocystis sp. strain PCC 6803. Transformants exhibited a 10,000-fold increase in survival compared to wild-type cells following either freeze-drying, air drying, or desiccation over phosphorus pentoxide. The phase transition temperatures and vibration frequencies (P==O stretch) in phospholipids suggested that sucrose maintained membrane fluidity during cell dehydration. 相似文献
19.
Selenium metabolism in Escherichia coli 总被引:3,自引:0,他引:3
Escherichia coli will reduce selenite (SeO 3 2- ) andselenate (SeO 4 2- ) to elemental selenium Se 0 . Seleniumwill also become incorporated intoproteins as part of the amino acids selenocysteine or selenomethionine.The reaction of selenitewith glutathione produces selenodiglutathione (GS-Se-GS). Selenodiglutathioneand itssubsequent reduction to glutathioselenol (GS-SeH) are likely the key intermediatesin the possiblemetabolic fates of selenium. This review presents the possible pathwaysinvolving selenium in E. coli. Identification of intermediates and potentialprocesses from uptake of the toxic oxyanions through to theirdetoxification will assist us inunderstanding the complexities of metalloid oxyanion metabolism in thesebacteria. 相似文献
20.
Escherichia coli, which lacks cytoplasmic superoxide dismutases, exhibits various phenotypic deficits if grown aerobically. Here we report that sodAsodB E. coli cannot use glycerol under aerobic conditions. The reason is low activity of glycerol kinase (GK), the rate-limiting enzyme in glycerol metabolism. Superoxide does not inactivate GK, but makes it susceptible to inactivation by a heat-labile factor present in the cell-free extracts. This factor seems to be part of a proteolytic system, which recognizes and degrades oxidatively modified proteins. 相似文献