首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1 Grass buffer strips have been widely sown to mitigate against intensive agricultural management practices that have negatively impacted on invertebrate and plant biodiversity in arable farming systems. Typically, such strips are floristically species poor and are dominated by grasses. In the present study, we developed management practices to enhance the floristic and structural diversity of these existing strips for the benefit of spiders, a key provider of natural pest control in crops.
  • 2 Across three UK arable farms, we investigated the benefits of: (i) scarification to create germination niches into which wildflower seeds were sown and (ii) the effect of graminicide applications to suppress grass dominance. Spiders were sampled twice per year (July and September) during 2008 and 2009.
  • 3 The combination of scarification with wildflower seeds, as well as graminicide, resulted in the greatest wildflower cover and lowest grass cover, with a general trend of increased abundance of adult and juvenile spiders. The abundance of Pachygnatha degeeri, Bathyphantes gracilis and juvenile wolf spiders of the genus Pardosa was positively correlated with wildflower cover, probably reflecting increased prey availability. Sward structure was negatively correlated with Erigone atra, Oedothorax fuscus and juvenile Pardosa abundance.
  • 4 Management that utilizes existing commonly adopted agri‐environment options, such as grass buffer strips, represents a potentially important conservation tool for increasing the quantity and quality of invertebrate habitats. This can maximize opportunities for the provision of multiple ecosystem services, including pest regulation by predators such as spiders. These management practices have the potential to be incorporated into existing U.K. and European agri‐environment schemes.
  相似文献   

2.
Anthropogenic activities are causing unprecedented rates of soil and ecosystem degradation, and the current restoration practices take decades and are prone to high rates of failure. Here we propose, the development and application of emerging microbiome tools that can potentially improve the contents and diversity of soil organic matters, enhancing the efficacy and consistency of restoration outcomes.  相似文献   

3.
Quantifying dispersal is fundamental to understanding the effects of fragmentation on populations. Although it has been shown that patch and matrix quality can affect dispersal patterns, standard metapopulation models are usually based on the two basic variables, patch area and connectivity. In 2004 we studied migration patterns among 18 habitat patches in central Spain for the butterfly Iolana iolas, using mark–release–recapture methods. We applied the virtual migration (VM) model and estimated the parameters of emigration, immigration and mortality separately for males and females. During parameter estimation and model simulations, we used original and modified patch areas accounting for habitat quality with three different indices. Two indices were based on adult and larval resources (flowers and fruits) and the other one on butterfly density. Based on unmodified areas, our results showed that both sexes were markedly different in their movements and mortality rates. Females emigrated more frequently from patches, but males that emigrated were estimated to move longer daily dispersal distances and suffer higher mortality than females during migration. Males were more likely to emigrate from small than from large patches, but patch area had no significant effect on female emigration. The effects of area on immigration rate and the within-patch mortality were similar in both sexes. Based on modified areas, the estimated parameter values and the model simulation results were similar to those estimated using the unmodified patch areas. One possible reason for the failure to significantly improve the parameter estimates of the VM model is the fact that resource quantity and butterfly population sizes were strongly correlated with patch area. Our results suggest that the standard VM modelling approach, based on patch area and connectivity, can provide a realistic picture of the movement patterns of I. iolas .  相似文献   

4.
5.
Srećko Leiner 《Hydrobiologia》1996,319(3):237-249
The accuracy of two trout biomass (standing stock) prediction models, developed for Wyoming streams by Binns & Eiserman (1979), was evaluated for New Mexico streams inhabited by brown trout, Salmo trutta L. and rainbow trout, Oncorhynchus mykiss Walbaum. Thirty-two representative sites in 15 different streams were sampled under summer low-flow conditions in 1988 and 1989. The 11 phyiscal, chemical, and biological variables used in original models were used as independent variables for simple and multiple regression analysis designed to predict total trout biomass. Model I of Binns and Eiserman proved to be of limited utility; it explained 53% of the variation in total trout biomass at each of the New Mexico sites (kg ha−1 = 8.916 + 0.830/Model U). Only 9.5% of the biomass variations was explained by Model II. Statistical analysis showed that trout biomass was significantly correlated with nitrate-nitrogen concentration and macroinvertebrate diversity in Model I. Because both variates are time consuming to estimate, Model I may not be any more cost-effective than sampling trout directly. The low predictive power of Model II probably indicates that it is limited to the geographical area of field measurement origin.  相似文献   

6.
The use of contour and riparian buffer strips planted with perennial vegetation has been found to improve surface water quality by reducing NO3-N and sediment outflow from cropland to a river. Modeling such a system to compare alternative layout and different strip sizes often faces challenges in flow routing scheme. The hillslope scheme in the Soil and Water Assessment Tool (SWAT) offers the flexibility of allowing the flow from a crop area to be routed through a buffer and/or contour strip, in which a thin sheet flow represents more closely the natural condition of a watershed. In this study, the SWAT model was applied to the Walnut Creek watershed and the hillslope option was used to examine the effectiveness of contour and riparian buffer strips in reducing NO3-N outflows from crop fields to the river. Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour and riparian buffer strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were used to simulate the effects of strip size on stream water quality. Simulation results showed that a filter strip having 10–50% of the subbasin area could lead to 55–90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10–20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. Varying the area and location of the contour and buffer strip affects NO3-N outflow and crop yields as well since it takes the land out of production. The size of the filter strip has economic implications in deciding how much land area to dedicate to prevent NO3-N loss to a desired limit or vice versa. The results of this study can assist in cost-benefit analysis and decision-making in best management practices for environmental protection.  相似文献   

7.
Understanding effects of habitat and landscape features on genetic variation is a prerequisite for the development of habitat and landscape management strategies aimed at conserving genetic diversity. While there has been considerable research on the effects of landscape structure on the genetics of populations, a recent review identified key biases in this body of work. The majority of landscape genetic studies investigate the intervening matrix’s influence on differentiation and gene flow among populations. Although characteristics of local habitat patches may be important determinants of genetic diversity, fewer studies have examined these relationships. Here we use node- and neighbourhood-based approaches to analyze correlates of genetic diversity in the bog copper (Lycaena epixanthe), a specialist butterfly endemic to temperate Nearctic peatlands that is threatened in parts of its range. Based on 190 repeatable and polymorphic amplified fragment length polymorphism loci, we found that genetic diversity was higher in habitat patches that were smaller and surrounded by more open water. Our results indicate that valuing small peatlands and preserving the surrounding water table may be important for conservation of genetic diversity in this highly specialized species. Our study highlights the importance of variables affecting habitat quality for conservation genetics.  相似文献   

8.
The decline in distribution and abundance of biodiversity requires evidence-based guidelines for cost-effective conservation management and systematic quantitative assessments of its effects. We investigated the efficiency of a habitat restoration programme aimed at reducing the risk of extinction of the Iolas blue Iolana iolas (Ochsenheimer, 1816), one of the rarest butterflies of Central Europe. Using occupancy and capture-mark-recapture (CMR) models accounting for probability of detection, we assessed habitat patch occupancy, habitat selection, demography and dispersal with the aim of testing and refining restoration measures. Count surveys performed at 38 plantations dedicated to the species’ unique host plant resulted in an occupancy rate of 50 %, with mostly very low relative abundance indices. The site-occupancy habitat analysis demonstrated that species abundance was best explained by host plant vitality, habitat patch connectivity, and solar radiation. CMR surveys yielded very high catchability (82 %), individual detectability (86 %) rates and limited dispersal capacity. These results form the basis for future efficient count surveys to assess species distribution and abundance. They also provide evidence-based recommendations for improving ongoing habitat restoration: (i) the attractiveness of host plant plantations must be enhanced by promoting mass blossoming, which can be achieved through systematic autumn pruning of the extant plantations; (ii) new plantations should be created in order to fill in the gaps in the landscape matrix, to increase meta-population capacity through improved habitat connectivity. Finally, this study demonstrates the relevance of efficiency tests as an integral, adaptive phase of any conservation research activity.  相似文献   

9.
栖息地质量对两种网蛱蝶集合种群结构和分布的影响   总被引:7,自引:0,他引:7  
在河北省赤城县研究了栖息地质量对大网蛱蝶Melitaea phoebe和金堇蛱蝶Euphydryas aurinia两种网蛱蝶集合种群结构和分布的影响。这两种网蛱蝶在约10 km2的区域内共存,成虫期的蜜源植物几乎相同,大网蛱蝶的发生峰期比金堇蛱蝶晚约一个月,两者只有不到一周左右的时间重叠。大网蛱蝶和金堇蛱蝶幼虫的寄主植物分别是: 祁州漏芦(菊科)和华北蓝盆花(川续断科)。蜜源植物的丰度与两种网蛱蝶的局域种群大小呈正相关;祁州漏芦的密度对大网蛱蝶的局域种群大小影响很大,金堇蛱蝶的局域种群大小则与其寄主植物华北蓝盆花的高度正相关;斑块内平均植被高度与两种网蛱蝶的局域种群大小均呈正相关,植物多样性、植物均匀性和植被盖度均与金堇蛱蝶的局域种群大小负相关,与大网蛱蝶的关系不大。同时分析了其他因子如斑块的坡向、坡度等的影响。主要结论是:1)幼虫寄主植物的不同和成蝶飞行峰期的分离允许两种网蛱蝶在这样一个小的斑块区域内共存;2)蜜源是重要的限制因子,并且受气候随机性的影响很大,蜜源的波动可以很好地解释网蛱蝶集合种群在年度间的动态变化;3)大网蛱蝶和金堇蛱蝶的飞行、食物搜寻能力的不同以及各自寄主植物的生物学特性、空间分布的不同决定了它们具有不同的集合种群结构: 金堇蛱蝶是经典的集合种群,大网蛱蝶是源-汇集合种群;4)斑块质量和昆虫行为共同决定了两种网蛱蝶的集合种群结构和分布。  相似文献   

10.
In contrast to many studies on the habitat quality of road verges for butterflies in relation to management regimes, little is known about whether road verges also function as corridors linking fragmented grassland habitats. We experimentally compared movements of four model species, two small blues and two medium browns, with one habitat specialist and one habitat generalist in each size and phylogenetic category. A total of 425 individual butterflies were caught and translocated to an experimental arena with three 2 × 30 m grassland strips that approximated road verges; one with adult feeding resources, one sheltered from the wind, and one without food and shelter. Movements in grassland strips were compared to movements in continuous grassland habitat. Results indicated that (1) individuals did not use the low-quality strip, (2) only specialists used strips but not in the same way according to their size and phylogenic category, and (3) strip use could not be predicted from habitat selection. This finding supports the idea that corridors of intermediate quality are the most efficient to promote dispersal rates in fragmented landscapes. Road verges cover 250,000 ha in Sweden, which is nearly the total amount of seminatural grasslands. Our results suggest that, to benefit butterfly dispersal among grassland patches, road verges should be managed to create a more favourable microclimate (e.g. sheltered from wind, high temperatures).  相似文献   

11.
Public participation in scientific research, now commonly referred to as citizen science, is increasingly promoted as a possibility to overcome the large-scale data limitations related to biodiversity and conservation research. Furthermore, public data-collection projects can stimulate public engagement and provide transformative learning situations. However, biodiversity monitoring depends on sound data collection and warranted data quality. Therefore, we investigated if and how trained and supervised pupils are able to systematically collect data about the occurrence of diurnal butterflies, and how this data could contribute to a permanent butterfly monitoring system. We developed a specific assessment scheme suitable for laypeople and applied it at 35 sampling sites in Tyrol, Austria. Data quality and its explanatory power to predict butterfly habitat quality was investigated comparing data collected by pupils with independent assessments of professional butterfly experts. Despite substantial identification uncertainties for some species or species groups, the data collected by pupils was successfully used to predict the general habitat quality for butterflies using a linear regression model (r²?=?0.73, p?<0.001). Applying the proposed method in a citizen science context with laypeople could support both the long term monitoring of butterfly habitat quality, as well as the efficient selection of sites for professional in-depth assessments.  相似文献   

12.
Knowledge of the ecology of pre-adult stages of an organism at its species’ range margins is a prerequisite for conserving species, especially for understanding its responses to future climate changes. Largely sedentary premature life stages require specific living conditions within a relatively small area. Such conditions are created by vegetation structure heterogeneity and a microclimate gradient, generated by varying microtopography. We investigated the microhabitat selection patterns of egg-laying females and overwintering caterpillars of peatland butterfly Coenonympha tullia relative to vegetation composition, water quantity and microclimatic conditions across microtopographic zones of transition mire at the species’ southern range margin. We showed that (1) small-scale variability in mire microtopography determines oviposition site selection and larval presence; (2) microhabitats of pre-adult stages were largely confined to the intermediate microtopographic zone of the transition mire (flats); (3) egg-laying females and overwintered larvae preferred microsites with high coverage of main hostplants (Trichophorum alpinum, Carex lasiocarpa, C. limosa, C. panicea), and those with more humid and cooler summertime conditions than on hummocks; (4) females and larvae avoided shallow hollows permanently filled with water. The vegetation structure of flats enables the females to select spots with sufficient humidity for egg development, and allows the larvae to change their location according to suitable thermal and moisture conditions. We also discuss poor prospects for species in view of impacts of future climate changes on mire ecosystems.  相似文献   

13.
  • 1 A review is presented of the literature on riparian vegetated buffer strips (VBS) for use in stream-water-quality restoration and limitations associated with their use are discussed. The results are also presented of recent investigations on the effectiveness of a forested and a grass vegetated buffer strip for reducing shallow subsurface inputs of nutrients from agriculture to a stream in central Illinois, U.S.A.
  • 2 Because riparian zones link the stream with its terrestrial catchment, they can modify, incorporate, dilute, or concentrate substances before they enter a lotic system. In small to mid-size streams forested riparian zones can moderate temperatures, reduce sediment inputs, provide important sources of organic matter, and stabilize stream banks.
  • 3 Several questions on the utility and efficiency of vegetated buffer strips for stream restoration still remain unanswered, including: what types (grass v forest) are most efficient; do they become nutrient saturated; are they only temporary sinks; how does species composition influence effectiveness; and, what is the optimal width of buffer to facilitate nutrient reduction under different conditions?
  • 4 Water samples were collected (1989–90) from lysimeters located at three depths (60, 120, and > 120cm) in an upland area planted in conventional row crops (corn and soybean) and in three adjacent riparian buffer treatments, a 39m wide grass buffer. a 16 m wide mature forested buffer, and a buffer planted in row-crops to the stream bank. Concentrations of dissolved and total phosphorus and nitrate-N in each sample were determined following major precipitation events over a seventeen month period.
  • 5 Both the forested and grass VBS reduced nitrate-N concentrations in shallow groundwater (up to 90% reduction). On an annual basis the forested VBS was more effective at reducing concentrations of nitrate-N than was the grass VBS, but was less efficient at retaining total and dissolved P.
  • 6 During the dormant season, both grass and forested buffer strips released dissolved and total P to the groundwater. The VBS apparently acted as a nutrient sink for much of the year, but also released accumulated nutrients during the remaining portion of the year. Periodic harvesting of plant biomass may reduce the amount of P released during the dormant season.
  • 7 VBSs are not as effective in agriculture areas with tile drained fields. Alternative restoration practices such as discharging drain tiles into wetlands constructed parallel to the stream channel may prove to be a more effective means of controlling non-point-source agricultural inputs of nutrients in such areas.
  相似文献   

14.
15.
E Ockinger  H Van Dyck 《PloS one》2012,7(8):e41517
Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.  相似文献   

16.
The conservation of most temperate grassland habitats and their characteristic fauna and flora requires regular low-intensive forms of land-use to counteract natural succession. Although many species tolerate moderate disturbance regimes, some are known to be susceptible to grazing or mowing, thereby causing a management dilemma. One of these species is the Woodland Ringlet butterfly, Erebia medusa. In this study, we analysed which environmental factors determine the occurrence of E. medusa in the Diemel Valley (Central Germany). Furthermore, we conducted microclimatic measurements during the winter months to investigate the role of the litter layer as a microclimatic buffer. Patch occupancy in the Diemel Valley was well explained by the amount of litter present in a patch and connectivity to other inhabited patches. The role of local climatic conditions could not be clarified, due to inter-correlations with connectivity. During the winter, the air temperature inside the litter layer was significantly less variable than above it. We conclude that the current distribution of E. medusa in the Diemel Valley is caused by the combined effect of habitat quality and connectivity, and perhaps also by climatic factors. The importance of the litter layer reflects the dependence of E. medusa on low-intensive or absent land-use. In addition, the litter layer possibly constitutes an essential habitat element, as it buffers temperature fluctuations and thus probably reduces the energy consumption of overwintering larvae. Given the species’ preference for abandoned grasslands, the conservation of E. medusa requires a low-intensity habitat management, for example, by rotational grazing or mowing of small parts of the sites. On the landscape level, the preservation of well-connected habitat networks is important.  相似文献   

17.
Unprotected streams within the agricultural Midwest region of the United States are subject to sedimentation, nutrification, and agricultural chemicals. Grass riparian filter strips (GRFSs) have been implemented as a best management practice to minimize sedimentation and associated materials that are harmful to aquatic ecosystems; however, few studies have examined the benthic community response to GRFS installation. This study introduces a least-desired index (LDI) multimetric approach of evaluating benthic communities in response to GRFS installation. LDI was determined in a reciprocal fashion to that of a benthic macroinvertebrate index of biotic integrity (B-IBI). When reference conditions are not available for the use of B-IBI, anti-reference sites, representing least-desired conditions, can be used in constructing an LDI. A B-IBI and LDI were constructed in the Claypan Till Plains Subsection of Missouri and comparatively used to evaluate two test sites where tall fescue GRFS were installed. Five metrics were used to develop the B-IBI and six for the LDI. The LDI tended to be more conservative at evaluation in comparison to the B-IBI. Paired t-tests showed that LDI and B-IBI were significantly different at scoring test sites. The LDI assessed both test sites as showing no response to GRFS installation, whereas the B-IBI suggested moderate improvement. The LDI was considered to be a better index for evaluation because the streams used to develop the B-IBI were not suitable reference sites. An argument for the use of chironomid based metrics in low gradient agricultural streams is presented.  相似文献   

18.
We studied the factors affecting the persistence of a frugivorous butterfly species, Hamadryas februa, in a set of forested islands located in Lago Guri, a reservoir in eastern Venezuela. The roles of isolation, area and habitat quality (larval host plant density, light conditions and presence of fruiting trees) in determining island butterfly densities were investigated through observations and experiments. Butterfly densities increased significantly with increase in both island area and local larval host plant density, but were not related to distance from colonizing sources, light conditions or presence of fruiting trees. Butterfly populations on even distant islands were not augmented by the experimental introduction of adults. Butterfly residence times were higher on sites located on a large island than on small islands. However, there was no evidence that the positive correlation between adult density and host plant density was caused by increased reproduction. The results indicate that butterfly densities are not constrained by colonization capabilities but rather, by lack of appropriate host plants and high rates of emigration from islands. The study indicates the importance of considering patterns in movement and habitat heterogeneity when designing conservation strategies for insects in fragmented landscapes.  相似文献   

19.
Peat bogs are valuable ecosystems because they support regional and local hydrological conditions, and store carbon and other greenhouse gases. Nevertheless, their area in Europe is extremely reduced due to human activities. As a result, the number of studies on biodiversity and the environmental factors affecting the distribution of insects, including butterflies, in large intact peatlands is limited. Such studies provide an important baseline for the subsequent analysis of changes during climate warming and for the assessment of succession in degraded peatlands. The results of such research have shown how butterfly assemblages react to local peat bog habitat conditions and contribute new information on the relations of consumers and the very specific environment of peat bogs. The presented research targets the relationship between characteristics of butterfly assemblages and key environmental variables in intact peat bog habitats. A total of 1427 individuals belonging to 23 butterfly species were recorded. In this study, I found that butterfly abundance, diversity and species composition varied significantly among three main habitat types, namely lagg zones, pine bogs and open bogs, although these habitats did not differ in species richness. The highest abundance was in the pine bogs which are characterized by higher plant community structural complexity and, as a result, higher butterfly food resources. The results confirmed positive responses of species richness and abundance of butterflies to nectariferous flower cover. On the other hand, open, sunny, but windy sites on the peat bogs contribute to a decrease of abundance.  相似文献   

20.
Fragmentation of food resources is a major cause of species extinction. We tested the effects of habitat area, isolation and quality for the occurrence and population density of the endangered butterfly Polyommatus coridon . Polyommatus coridon larvae are monophagous on the plant Hippocrepis comosa, and both species are specialised on calcareous grassland, which is an endangered and highly fragmented habitat type in Germany.
In 2001 we surveyed all known calcareous grasslands (n=298) around the city of Göttingen (Germany) to map the population size of H. comosa in these habitats. Further, habitat isolation (between-patch distance: 70–7220 m) and habitat quality (cover of flowering plants, height of herb layer, percent bare ground, cover of shrub layer, wind protection, inclination) were quantified. Hippocrepis comosa occurred on only 124 fragments, which were then surveyed by 20 min transect counts for adult P. coridon in 2001 and 2002.
Occurrence and population density of P. coridon were largely determined by the population size of its larval food plant, which was correlated with grassland area. Effects of habitat isolation and habitat quality on P. coridon populations contributed only little to the explanation.
In conclusion, this monophagous habitat specialist depended on large habitats with large food plant populations to exist in viable populations. Habitat isolation and quality appear to contribute to occurrence and density patterns only in landscapes where these factors shift towards extremes, therefore general recommendations for conservation programs are difficult as they depend on regional distinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号