首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent morphological and molecular phylogenetic studies of mouse lemurs (Microcebus) living in the western and southern regions of Madagascar have shown that specific diversity had been considerably underestimated. In large part, this underestimate was due to the lack of sufficient specimens from given localities to assess properly the level of phenotypic variation within and between populations. The accurate delineation of specific boundaries has no doubt been confounded by the diminutive size, nocturnal habits, and subtle morphological variation characteristic of mouse lemurs, which can make field identification of individuals problematic. We illustrate the use of molecular phylogenetic analysis to reveal reproductive isolation in two sympatric mouse lemur species, Microcebus murinus and M. griseorufus. Their documentation in the Berenty Private Reserve in the extreme south of Madagascar verifies the historically-broad distribution of Microcebus griseorufus, a species recently resurrected from synonomy.  相似文献   

2.
We report the development of 13 new microsatellite markers for mouse lemurs (Microcebus sp.). Two markers were isolated from the fat tailed dwarf lemur (Cheirogaleus medius) and 11 from the grey mouse lemur (Microcebus murinus). A total of 561 individuals from four different species of mouse lemurs was genotyped with the newly developed markers. All markers showed Mendelian inheritance in 21 families of mouse lemurs. All markers show polymorphism in several species of mouse lemurs and seven amplified in C. medius. Among these new markers are the first 10 published for M. berthae and the first 11 for M. griseorufus.  相似文献   

3.
The small-bodied mouse lemurs of Madagascar (Microcebus) are capable of heterothermy (i.e., torpor or hibernation). The expression of these energy-saving strategies has been physiologically demonstrated in three species: M. berthae, the pygmy mouse lemur (daily torpor), M. murinus, the gray mouse lemur (daily torpor and hibernation), and M. griseorufus, the reddish-gray mouse lemur (daily, prolonged torpor and hibernation). Additional evidence, based on radiotracking and seasonal body mass changes, indicated that mouse lemur capabilities for heterothermy extended to M. lehilahytsara, the Goodman’s mouse lemur. In this study, we confirm the use of hibernation in Goodman’s mouse lemurs at a new location, a high-plateau forest fragment in Ankafobe, central Madagascar. Our evidence is based on sleeping site monitoring of radiocollared individuals and the retrieval of three mouse lemurs from inside a tree hole, all of which displayed a lethargic state. Though our data are preliminary and scant, we show that hibernation occurs in high-plateau mouse lemurs, and suggest that a buffered environment (i.e., tree holes instead of nests) may be crucial to avoiding potentially extreme ambient temperatures.  相似文献   

4.
Primate vocalizations convey a variety of information to conspecifics. The acoustic traits of these vocalizations are an effective vocal fingerprint to discriminate between sibling species for taxonomic diagnosis. However, the vocal behavior of nocturnal primates has been poorly studied and there are few studies of their vocal repertoires. We compiled a vocal repertoire for the Endangered Sambirano mouse lemur, Microcebus sambiranensis, an unstudied nocturnal primate of northwestern Madagascar, and compared the acoustic properties of one of their call types to those of M. murinus and M. rufus. We recorded vocalizations from radio-collared individuals using handheld recorders over 3 months. We also conducted an acoustic survey to measure the vocal activity of M. sambiranensis in four forest habitat types at the study site. We identified and classified five vocalization types in M. sambiranensis. The vocal repertoires of the three Microcebus species contain very similar call types but have different acoustic properties, with one loud call type, the whistle, having significantly different acoustic properties between species. Our acoustic survey detected more calls of M. sambiranensis in secondary forest, riparian forest, and forest edge habitats, suggesting that individuals may prefer these habitat types over primary forest. Our results suggest interspecific differences in the vocal repertoire of mouse lemurs, and that these differences can be used to investigate habitat preference via acoustic surveys.  相似文献   

5.
The genus Microcebus (mouse lemurs) are the smallest extant primates. Until recently, they were considered to comprise two different species: Microcebus murinus, confined largely to dry forests on the western portion of Madagascar, and M. rufus, occurring in humid forest formations of eastern Madagascar. Specimens and recent field observations document rufous individuals in the west. However, the current taxonomy is entangled due to a lack of comparative material to quantify intrapopulation and intraspecific morphological variation. On the basis of recently collected specimens of Microcebus from 12 localities in portions of western Madagascar, from Ankarana in the north to Beza Mahafaly in the south, we present a revision using external, cranial, and dental characters. We recognize seven species of Microcebus from western Madagascar. We name and describe 3 spp., resurrect a previously synonymized species, and amend diagnoses for Microcebus murinus (J. F. Miller, 1777), M. myoxinus Peters, 1852, and M. ravelobensis Zimmermann et al., 1998.  相似文献   

6.
Mouse lemurs (Microcebus spp.) are an exciting new primate model for understanding human aging and disease. In captivity, Microcebus murinus develops human-like ailments of old age after five years (e.g., neurodegeneration analogous to Alzheimer''s disease) but can live beyond 12 years. It is believed that wild Microcebus follow a similar pattern of senescence observed in captive animals, but that predation limits their lifespan to four years, thus preventing observance of these diseases in the wild. Testing whether this assumption is true is informative about both Microcebus natural history and environmental influences on senescence, leading to interpretation of findings for models of human aging. Additionally, the study of Microcebus longevity provides an opportunity to better understand mechanisms of sex-biased longevity. Longevity is often shorter in males of species with high male-male competition, such as Microcebus, but mouse lemurs are sexually monomorphic, suggesting similar lifespans. We collected individual-based observations of wild brown mouse lemurs (Microcebus rufus) from 2003–2010 to investigate sex-differences in survival and longevity. Fecal testosterone was measured as a potential mechanism of sex-based differences in survival. We used a combination of high-resolution tooth wear techniques, mark-recapture, and hormone enzyme immunoassays. We found no dental or physical signs of senescence in M. rufus as old as eight years (N = 189, ages 1–8, mean = 2.59±1.63 SE), three years older than captive, senescent congeners (M. murinus). Unlike other polygynandrous vertebrates, we found no sex difference in age-dependent survival, nor sex or age differences in testosterone levels. While elevated male testosterone levels have been implicated in shorter lifespans in several species, this is one of the first studies to show equivalent testosterone levels accompanying equivalent lifespans. Future research on captive aged individuals can determine if senescence is partially a condition of their captive environment, and studies controlling for various environmental factors will further our understanding of senescence.  相似文献   

7.
Hybrid zones in ecotones can be useful model systems for the study of evolutionary processes that shape the distribution and discreteness of species. Such studies could be important for an improved understanding of the complex biogeography of Madagascar, which is renowned for its outstanding degree of small-scale endemism. Certain forest remnants in central Madagascar indicate that transitional corridors across the island could have connected microendemics in different forest types in the past. Evolutionary processes in such corridors are difficult to study because most of these corridors have disappeared due to deforestation in central Madagascar. We studied a hybrid zone in one of the few remaining ecotonal corridors between dry and humid forests in Madagascar, which connects two species of mouse lemurs, Microcebus griseorufus in dry spiny forest and Microcebus murinus in humid littoral forest. We sampled 162 mouse lemurs at nine sites across this boundary. Morphometric analyses revealed intermediate morphotypes of many individuals in transitional habitat. Bayesian clustering of microsatellite genotypes and assignment tests yielded evidence for a mixed ancestry of mouse lemurs in the ecotone, where we also observed significant linkage disequilibria and heterozygote deficiency. In contrast to these observations, mitochondrial haplotypes displayed a sharply delimited boundary at the eastern edge of spiny forest, which was noncoincident with the signals from microsatellite data. Among several alternative scenarios, we propose asymmetric nuclear introgression due to male-biased dispersal, divergent environmental selection, and an expansion of dry spiny forest in the course of aridification as a probable explanation of our observations.  相似文献   

8.
Because closely related species are likely to be ecologically similar owing to common ancestry, they should show some degree of differentiation in order to coexist. We studied 2 morphologically similar congeneric species, the golden-brown mouse lemur (Microcebus ravelobensis) and the gray mouse lemur (M. murinus). These species are found in partial sympatry in the dry deciduous forest in northwestern Madagascar. We investigated whether 1) feeding niche differentiation and/or 2) a reduction in locomotor activity during periods of food shortage, which might reflect an energy saving strategy, can explain the coexistence of these 2 lemur species. To obtain feeding and behavioral data, we conducted focal observations of 11 female Microcebus murinus and 9 female M. ravelobensis during 11 months from 2007 to 2008 and collected fecal samples for 6 mo. We monitored the phenology of 272 plant specimens and trapped arthropods to determine food availability. Results revealed interspecific differences in 1) relative proportion of consumed food resources, resulting in a merely partial dietary overlap, and in 2) relative importance of seasonally varying food resources throughout the year. In addition, females of Microcebus murinus showed a reduction in locomotor activity during the early dry season, which might reflect an energy-saving strategy and might further reduce potential competition with M. ravelobensis over limited food resources. To conclude, a combination of interspecific feeding niche differentiation and differences in locomotor activity appears to facilitate the coexistence of Microcebus murinus and M. ravelobensis.  相似文献   

9.
Most Malagasy primate communities harbor a diverse assemblage of omnivorous species. The mechanisms allowing the coexistence of closely related species are poorly understood, partly because only preliminary data on the feeding ecology of most species are available. We provide an exemplary feeding ecology data set to illuminate coexistence mechanisms between sympatric gray and Madame Berthe’s mouse lemurs (Microcebus murinus, M. berthae). We studied their feeding ecology in Kirindy Forest/CFPF, a highly seasonal dry deciduous forest in western Madagascar. Between August 2002 and December 2007, we regularly (re-)captured, marked, and radiotracked females of both species. A combination of direct behavioral observations and fecal analyses revealed that both Microcebus species used fruit, arthropods, gum, insect secretions, and small vertebrates as food sources. However, Microcebus berthae and M. murinus differed in both composition and seasonal variation of their diets. Whereas the diet of Microcebus murinus varied seasonally and was generally more diverse, M. berthae relied mainly on insect secretions supplemented by animal matter. The differences were also reflected in a very narrow feeding niche of Microcebus berthae and a comparatively broad feeding niche of M. murinus. Resource use patterns of Madame Berthe’s and more so of opportunistic gray mouse lemurs broadly followed resource availability within the strongly seasonal dry forest. Feeding niche overlap between the 2 sympatric species was high, indicating that food resource usage patterns did not reflect niche partitioning, but can instead be explained by constraints due to food availability.  相似文献   

10.
Studies on the impact of habitat loss on species occurrence consistently find that the amount of habitat (measured as patch area) is a major determinant of species occurrence at a patch-level. However, patch-level research may fail to detect important patterns and processes only observable at a landscape-level. A landscape-level approach that incorporates species-specific scale responses is needed to better understand what drives species occurrence. Our aim was to determine the landscape-level scale of effect of habitat amount on the occurrence of three species of nocturnal lemurs (Cheirogaleus medius, Microcebus murinus, and M. ravelobensis). We surveyed line transects to determine the occurrence of three lemur species within a fragmented landscape of deciduous dry forest and anthropogenic grassland in northwestern Madagascar. To determine the scale of effect of habitat loss on lemur occurrence, we compared logistic regression models of occurrence against habitat amount among eight different landscape scales using Akaike's Information Criterion values. We found differing scale responses among the lemurs in our study. Occurrence of C. medius responded to habitat amount at scales between 0.5–4 ha, M. murinus at scales between 1 and 4 ha and M. ravelobensis at scales between 0.125 and 4 ha. We suggest that the scale of effect for C. medius is mediated by their ability to hibernate. A relatively lower scale-response for Microcebus spp. likely reflect their omnivorous diet, small habitat requirements, and limited dispersal ability. Differences in scale responses between M. murinus and M. ravelobensis are likely a result of differing dispersal ability and responses to edge effects between these species. Our study is among the first on lemurs to show the value of a landscape-level approach when assessing the effects of habitat loss on species occurrence.  相似文献   

11.
Forest loss, fragmentation, and anthropization threaten the survival of forest species all over the world. Shifting agriculture is one of these threatening processes in Madagascar. However, when its cycle is halted and the land is left to regenerate, the resulting growth of secondary forest may provide a viable habitat for folivorous and omnivorous lemur species. We aimed to identify the response of nocturnal lemurs to different successional stages of regenerating secondary, degraded mature, and mature forest across a mosaic-type landscape. We surveyed four nocturnal lemur species (Avahi laniger, Microcebus cf. simmonsi, Allocebus trichotis, and Daubentonia madagascariensis) in four forest types of varying habitat disturbance in northeastern Madagascar. We estimated densities in mature and regenerating secondary forest for the eastern woolly lemur (Avahi laniger) and mouse lemur (Microcebus cf. simmonsi), two sympatric species with folivorous and omnivorous diets respectively. We did not estimate densities of Allocebus trichotis and Daubentonia madagascariensis owing to small sample size; however, we observed both species exclusively in mature forest. We found higher population densities of A. laniger and M. cf. simmonsi in secondary than in mature forest, showing the potential of regenerating secondary forest for lemur conservation. Several environmental factors influenced the detectability of the two lemur species. While observer and habitat type influenced detection of the eastern woolly lemur, canopy height and vine density influenced detection of mouse lemurs. Understanding how different species with different diets interact with anthropogenically impacted habitat will aid future management decisions for the conservation of primate species.  相似文献   

12.
Understanding the drivers of species adaptations to changing environments on the one hand and the limits for hybridization on the other hand is among the hottest questions in evolutionary biology. Parasites represent one of the major selective forces driving host evolution and at least those with free‐living stages are at the same time dependent on the ecological conditions of their host's habitat. Local immunological adaptations of host species to varying parasite pressure are therefore expected and might represent the genetic basis for ecological speciation and the maintenance of recently diverged species. Madagascar provides one of the rare examples where two partially sympatric primate species (Microcebus griseorufus, M. murinus) and their hybrids, as well as an allopatric species (M. cf rufus) live in close proximity along a very steep environmental gradient ranging from southern dry spiny bush to gallery forest to evergreen eastern humid rain forest, thus mimicking the situation encountered during extensions and retreats of vegetation formations under changing climatic conditions. This system was used to study parasite infection and immune gene (MHC) adaptations to varying parasite pressure that might provide selective advantages to pure species over hybrids. Parasite burdens increased with increasing humidity. M. griseorufus, M. murinus, and their hybrids but not M. rufus shared the same MHC alleles, indicating either retention of ancestral polymorphism or recent gene flow. The hybrids had much higher prevalence of intestinal parasites than either of the parent species living under identical environmental conditions. The different representation of parasites can indicate a handicap for hybrids that maintains species identities.  相似文献   

13.
The reddish-gray mouse lemur (Microcebus griseorufus) is one of only a few small mammals inhabiting the spiny forest of southwestern Madagascar. In this study we investigated the physiological adjustments which allow these small primates to persist under the challenging climatic conditions of their habitat. To this end we measured energy expenditure (metabolic rate) and body temperature of 24 naturally acclimatized mouse lemurs, kept in outdoor enclosures, during different seasons (summer, winter, and the transition period between the two seasons). Mouse lemurs displayed two main physiological strategies to compensate seasonal and diurnal fluctuations of ambient temperature. On the one hand, individuals entered hypometabolism with decreasing ambient temperature (T a) during the transition period and winter, enabling them to save up to 21 % energy per day (92 % per hour) compared with the normal resting metabolic rate at comparable T a. On the other hand, euthermic mouse lemurs also showed physiological adjustments to seasonality when resting: the lower critical temperature of the thermoneutral zone decreased from summer to winter by 7.5 °C, which allowed mouse lemurs to keep energy demands constant despite colder T as during winter. In addition, the basal metabolic rate was substantially lowered prior to the winter period, which facilitated accumulation of fat reserves. The combination of physiological modifications during euthermia in addition to hypometabolism, which can be individually adjusted according to external parameters and respective body condition, is important as it allows M. griseorufus to cope with the environmental variability of an energetically challenging habitat.  相似文献   

14.
The alarming rate of deforestation in Madagascar is driving some endemic primates to extinction. Surprisingly, anthropogenic habitat disturbance is not always deleterious. The effect of disturbance on lemur abundance may be related to diet, with frugivorous species more prone to population declines than folivores or insectivores. To test the effects of disturbance on lemur abundance and group size, we surveyed 2 sites within contiguous forest at Ranomafana National Park, 1 lightly disturbed primary forest (Vato) and 1 heavily logged forest (Tala). We quantified forest structure variables along 6 survey routes and conducted 68 diurnal and 42 nocturnal lemur surveys. Canopy closure, canopy height, and understory visibility were greater in Vato than in Tala. We encountered 2 frugivorous lemurs (Eulemur rufifrons, Varecia variegata) and 1 folivore (Avahi peyrierasi) significantly more frequently in Vato than in Tala, whereas the opposite was true for the insectivorous Microcebus rufus. Rates did not differ statistically for 1 frugivore (Eulemur rubriventer) and 2 folivores (Propithecus edwardsi, Hapalemur griseus). Comparisons across the 6 survey routes suggest that the abundance was heterogeneous within as well as between sites. Neither group size nor composition differed between sites. Encounter rates for Varecia variegata were positively related to canopy closure, and encounter rates for Avahi peyrierasi were positively related to canopy height. Encounter rates for Microcebus rufus were negatively related to canopy closure, height, and understory visibility. Similar to other studies, the results suggest that some lemurs, including folivores, may cope with anthropogenic disturbance better than others, including some frugivores. Lemur abundance is heterogeneous, though, even on small spatial scales.  相似文献   

15.
Tropical forests harbor extremely high levels of biological diversity and are quickly disappearing. Despite the increasingly recognized high rate of habitat loss, it is expected that new species will be discovered as more effort is put to document tropical biodiversity. Exploring under‐studied regions is particularly urgent if we consider the rapid changes in habitat due to anthropogenic activities. Madagascar is known for its extraordinary biological diversity and endemicity. It is also threatened by habitat loss and fragmentation. It holds more than 100 endemic primate species (lemurs). Among these, Microcebus (mouse lemurs) is one of the more diverse genera. We sampled mouse lemurs from several sites across northern Madagascar, including forests never sampled before. We obtained morphological data from 99 Microcebus individuals; we extracted DNA from tissue samples of 42 individuals and amplified two mitochondrial loci (cytb and cox2) commonly used for species identification. Our findings update the distribution of three species (Microcebus tavaratra, Microcebus arnholdi, and Microcebus mamiratra), including a major increase in the distribution area of M. arnholdi. We also report the discovery of a new Microcebus lineage genetically related to M. arnholdi. Several complementary approaches suggest that the newly identified Microcebus lineage might correspond to a new putative species, to be confirmed or rejected with additional data. In addition, morphological analyses showed (a) clear phenotypic differences between M. tavaratra and M. arnholdi, but no clear differences between the new Microcebus lineage and the sister species M. arnholdi; and (b) a significant correlation between climatic variables and morphology, suggesting a possible relationship between species identity, morphology, and environment. By integrating morphological, climatic, genetic, and spatial data of two northern Microcebus species, we show that the spatial distribution of forest‐dwelling species may be used as a proxy to reconstruct the past spatial changes in forest cover and vegetation type.  相似文献   

16.
Primate populations are declining the world over due to anthropogenic threats, including habitat loss and degradation. This raises the important question of how much habitat degradation a species can cope with. Habitat degradation is pronounced in Madagascar, where most of the human population depends on the direct exploitation of natural resources. We aimed to identify the response of Microcebus griseorufus (the gray-brown mouse lemur) to forest degradation and to define the structural traits of the vegetation that might be crucial for the species’ occurrence in anthropogenic landscapes. We documented the occurrence of Microcebus griseorufus in relation to vegetation structures along a gradient of forest degradation, at the edge of and west of Tsimanampetsotsa National Park in April and May 2007 and from October to December 2015. We confirmed the occurrence of Microcebus griseorufus using trapping and visual surveys, and measured vegetation structure. Logistic regression models showed that Microcebus griseorufus has a threshold response to tree density and the diameter of thick trees. The thresholds of occurrence were at 10–15% of the tree density recorded in intact forest and a mean diameter of trees with a diameter at breast height of >10 cm of 14.3 cm. The definition of such thresholds might help to maintain suitable habitat for this species and other primates living in anthropogenic landscapes, providing connectivity between isolated protected areas and allowing dispersal between populations.  相似文献   

17.
Flexibility in physiological processes is essential to adequately respond to changes in environmental conditions. Madagascar is a particularly challenging environment because climatic conditions seem less predictable than in comparative ecosystems in other parts of the world. We used the reddish-gray mouse lemur (Microcebus griseorufus) from the most unpredictable environment in Madagascar as a model to investigate the flexibility of energy saving strategies to cope with the unpredictability of their habitat. For this we measured T sk of free-ranging mouse lemurs throughout the year using temperature data loggers. M. griseorufus showed a very strong seasonal as well as an individual flexibility in thermoregulation. During the rainy season all M. griseorufus remained normothermic. At the beginning of the dry season individuals started to exhibit different energy saving strategies: irregular short torpor bouts, regular daily torpor, prolonged torpor of a few days, and hibernation over several weeks. The accumulation of sufficient seasonal body fat was the crucial factor determining the thermal behavior of individuals. The observed intraspecific and sex independent variation in thermoregulatory patterns within one population inhabiting the same small geographical area is exceptional and gives M. griseorufus the ability to respond to current environmental as well as individual conditions. This thermal plasticity might be seen as a key to success and survival for M. griseorufus in an extremely unpredictable environment.  相似文献   

18.
I compared the habitat utilization in 3 sympatric species of Cheirogaleidae (Microcebus murinus [81 g], Cheirogaleus medius [183 g] and Cheirogaleus major [362 g]) in a littoral rain forest in southeastern Madagascar during 3 rainy seasons. Females of promiscuous Microcebus murinus had small home ranges and the males had large overlapping home ranges. Home ranges of family groups of monogamous Cheirogaleus medius and C. major overlapped extensively. Home ranges of all 3 species overlapped completely in the study area but home range sizes differed among species and correlate positively with body masses. Male Microcebus murinus slept in open vegetation (79%) and alone (71%), whereas female M. murinus and family group members of Cheirogaleus spp. preferred communal sleeping in tree holes. There are significant interspecific differences in the choice of sleeping sites: smaller lemurs chose smaller trees and used more sleeping sites than larger lemurs did. Species also differed significantly in the vertical dimension of forest utilization: Cheirogaleus major used the upper part of the trees, C. medius used the middle parts, and Microcebus murinus used the understory during nocturnal activities. The 3 species differed mainly in vertical habitat utilization and showed vertical stratification.  相似文献   

19.
To investigate for the first time the relationship between contrasting patterns of seasonal changes of the environment and activity, body mass and reproduction for small nocturnal primates in nature, we compared a population of golden brown mouse lemur (Microcebus ravelobensis) in a dry deciduous forest of northwestern Madagascar and of the brown mouse lemur (Microcebus rufus) in an evergreen rain forest of eastern Madagascar. Both species live under similar photoperiodic conditions. Golden brown mouse lemurs (GBML) were active during the whole period (May to December) irrespective of changing environmental conditions. In contrast, a part of the population of brown mouse lemurs (BML) showed prolonged seasonal torpor, related to body mass during periods of short day length and low ambient temperatures. Differences between species might be due to differences in ambient temperature and food supply. Body weight and tail thickness (adipose tissue reserve) did not show prominent differences between short and long photoperiods in GBML, whereas both differ significantly in BML, suggesting species-specific differences in the photoperiodically driven control of metabolism. Both species showed a seasonal reproduction. The rate of growth and size of the testes were similar and preceded estrous onset in both species suggesting a photoperiodic control of reproduction in males. The estrous onset in females occurred earlier in GBML than in BML. Estrous females were observed over at least 4 months in the former, but in only 1 month in the latter species. Intraspecific variation of estrous onset in GBML may be explained by body mass. Interspecific variation of female reproduction indicates species-specific differences in the control of reproduction. Thus, environmentally related differences in annual rhythms between closely related small nocturnal lemurs emerged that allow them to cope with contrasting patterns of seasonal changes in their habitats.  相似文献   

20.

Background

A central question in evolutionary biology is how cryptic species maintain species cohesiveness in an area of sympatry. The coexistence of sympatrically living cryptic species requires the evolution of species-specific signalling and recognition systems. In nocturnal, dispersed living species, specific vocalisations have been suggested to act as an ideal premating isolation mechanism. We studied the structure and perception of male advertisement calls of three nocturnal, dispersed living mouse lemur species, the grey mouse lemur (Microcebus murinus), the golden brown mouse lemur (M. ravelobensis) and the Goodman's mouse lemur (M. lehilahytsara). The first two species occur sympatrically, the latter lives allopatrically to them.

Results

A multi-parameter sound analysis revealed prominent differences in the frequency contour and in the duration of advertisement calls. To test whether mouse lemurs respond specifically to calls of the different species, we conducted a playback experiment with M. murinus from the field using advertisement calls and alarm whistle calls of all three species. Individuals responded significantly stronger to conspecific than to heterospecific advertisement calls but there were no differences in response behaviour towards statistically similar whistle calls of the three species. Furthermore, sympatric calls evoked weaker interest than allopatric advertisement calls.

Conclusion

Our results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates. They furthermore support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号