首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated sludge has been utilized for the treatment of volatile organic compounds (VOCs) which are emitted from industrial processes. Nevertheless, activated sludge systems often suffer from the problem caused by concentration gradients as well as pressure drops. Channeling is also a major problem in the treatment process. As the bed height of the packed activated sludge system increases, the pressure drop increases accordingly. To solve these problems, we proposed immobilized activated sludge column reactors for treating VOCs in air. The immobilization material used to mix with activated sludge was properly selected in this work. Elemental compositions of these materials were analyzed. In this study, we also proposed a VOC feed system so that more stable inlet concentrations could be achieved. Hence, the equipment and operating costs were reduced and the problem of VOCs leaking from peristaltic pumps was avoided. The moisture content of the system was well maintained and better VOC removal efficiency was achieved. With an operation condition of progressive VOC inlet concentrations, better removal efficiency of benzene and toluene was then obtained. In conclusion, by the utilization of immobilization materials selected from wastes as well as immobilized activated sludge column reactors, significant removal efficiency for both benzene and toluene was demonstrated.  相似文献   

2.
Eighteen strains of bacteria were isolated from activated sludge purifying petroleum-refining wastewaters. These strains were plated on solidified mineral medium supplemented with oil fraction in concentration 1000 mg/l. Four of the strains that grew best in the presence of oil were selected for further studies. The strains were identified based on Bonde's scheme and microscopic observations. Three of them belonged to the genus Arthrobacter and one to the genus Micrococcus. Stationary cultures of single strains and their mixtures were set up in mineral medium containing oil (sterile and non-sterile) as sole carbon source in concentration 1000 mg/l. The oils were found to be removed the most efficiently by a mixture of the strains. After 14 days of culture the amount of oil was utilized by from 63 to 95%. In the next stage of the studies the bacteria were used to inoculate activated sludge. Stationary cultures of the activated sludge were set up in mineral medium with oil. The utilisation of petroleum products by non-inoculated activated sludge (control), activated sludge inoculated with a single strain or a mixture of all four strains was examined. In both inoculated activated sludge cultures approximately 80% of the oils were removed, compared to 60% in the control activated sludge. Therefore, inoculated activated sludge showed 20% higher effectiveness of removal of petroleum derivatives.  相似文献   

3.
We investigated the changes in the community structure of ammonia-oxidizing bacteria (AOB) in activated sludge during incubation of the sludge in a medium selective for AOB. The number of AOB present in the activated sludge sample was enumerated by the most-probable-number (MPN) method. Both the activated sludge sample and the incubated samples for MPN determination were analyzed by polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). Universal PCR-DGGE indicated that even after 40-d incubation in a medium selected for AOB, the MPN samples were predominantly composed of heterotrophic bacteria and not AOB. Denitrification by heterotrophic bacteria might lead to the underestimation of the MPN count of AOB. Not dominated in whole bacteria, one species of AOB was detected in both original activated sludge and samples after MPN incubation by PCR-DGGE targeting AOB. Furthermore, two new species of AOB were detected only after incubation. Therefore, the community structure of AOB in the MPN samples partially resembled that in the original activated sludge.  相似文献   

4.
Feast/famine growth environments and activated sludge population selection   总被引:2,自引:0,他引:2  
The effect of feast/famine growth conditions on activated sludge cultures indicates that nonfilamentous cultures can be selected by providing proper substrate gradients and extended periods of endogenous metablism. Reactor operating strategies providing intermittently high substrate concentrations result in cultures characterized by high peak substrate and oxygen uptake activities, rapid settling rates, and high resistance to starvation. Sludge settleability can be manipulated using controlled variations in growth environment with corresponding changes noted in sludge activity. In combination with the low net growth rates associated with activated sludge systems, feast/famine environments would logically convey a selection advantage to microbes capable of readily assimilating substrate materials and maintaining viability during extended starvation periods.  相似文献   

5.
The effect of selected nonionic surfactants Cirrasol FP, Cirrasol SF 200 and Cirrasol TCS on activated sludge organisms purifying wastes from the polyestre fibre industry was studied. The toxic effect of the mentioned surfactants towards bacteria, protozoa, rotifera and nematoda occurred at loads exceeding 0.32 mg surfactant/mg d.w./day and in periods of large fluctuations of the employed loads. Morphological changes of activated sludge flocs are also observed in similar conditions.  相似文献   

6.
《Process Biochemistry》2010,45(8):1415-1421
The fingerprints of extracellular polymeric substances (EPS) extracted from different types of biomass used for wastewater treatment (i.e., activated sludge, filamentous activated sludge, anaerobic granular sludge, anaerobic flocculated sludge) were studied by size exclusion chromatography (SEC) with Amersham Biosciences Superdex 200 10/300 GL column with a theoretical resolving range of 10–600 kDa. A new mobile phase, which does not display binding properties for multivalent cations, was previously optimized. This mobile phase contained 75 mM Hepes buffer at pH 7 with 15% acetonitrile (v/v) and was selected to minimize ionic and hydrophobic interactions between the molecules that make up the EPS and the column packing.When EPS extracted from similar sludges is analyzed using different mobile phases, the number of chromatographic peaks obtained is quite similar, and differences are mainly observed in the relative absorbance of the chromatographic peaks. However, very different chromatograms (number and relative absorbance of chromatographic peaks) are obtained for EPS extracted from different types of sludges. Furthermore, when dysfunctions, such as filamentous bulking in the activated sludge, occur in a bioreactor, they also induce strong variations in chromatographic profiles.  相似文献   

7.
Extracellular polymeric substances (EPS) are keys in biomass aggregation and settleability in wastewater treatment systems. In membrane bioreactors (MBR), EPS are an important factor as they are considered to be largely responsible for membrane fouling. Proteins were shown to be the major component of EPS produced by activated sludge and to be correlated with the properties of the sludge, like settling, hydrophobicity and cell aggregation. Previous EPS proteomic studies of activated sludge revealed several problems, like the interference of other EPS molecules in protein analysis. In this study, a successful strategy was outlined to identify the proteins from soluble and bound EPS extracted from activated sludge of a lab-scale MBR. EPS samples were first subjected to pre-concentration through lyophilisation, centrifugal ultrafiltration or concentration with a dialysis membrane coated by a highly absorbent powder of polyacrylate-polyalcohol, preceded or not by a dialysis step. The highest protein concentration factors were achieved with the highly absorbent powder method without previous dialysis step. Four protein precipitation methods were then tested: acetone, trichloroacetic acid (TCA), perchloric acid and a commercial kit. Protein profiles were compared in 4–12 % sodium dodecyl sulphate polyacrylamide gel electrophoresis gels. Both acetone and TCA should be applied for the highest coverage for soluble EPS proteins, whereas TCA was the best method for bound EPS proteins. All visible bands of selected profiles were subjected to mass spectrometry analysis. A high number of proteins (25–32 for soluble EPS and 17 for bound EPS) were identified. As a conclusion of this study, a workflow is proposed for the successful proteome characterisation of soluble and bound EPS from activated sludge samples.  相似文献   

8.
PHA production by activated sludge.   总被引:8,自引:0,他引:8  
The production of polyhydroxyalkanoate by anaerobic-aerobic activated sludge was reviewed concentrating on the biochemical mechanisms and on the trials to increase polyhydroxyalkanoate (PHA) content in activated sludge. The anaerobic aerobic activated sludge system selects microorganisms with the capabilities to couple glycolysis, polyphosphate degradation, and PHA accumulation for anaerobic substrate uptake. Some of the PHA-related metabolisms observed there have not been seen in pure cultures so far. Such metabolisms are the formation of PHA containing 3-hydroxy-2-methylvalerate, and '3-hydroxyvalerate fermentation' in which glucose or glycogen is converted to 3-hydroxyvalerate-rich PHA while yielding energy. The PHA content of activated sludge can be increased up to 62% by applying a microaerophilic-aerobic activated sludge process. PHA production by activated sludge is worth investigation.  相似文献   

9.
Increased attention has been given to minimization of sludge production from activated sludge process since environmental regulations are being more and more stringent in relation to excess sludge disposal. In a biological process, the more organic carbon utilized in carbon dioxide production, the fewer sludge produced, and vice versa. This paper, therefore, reviews strategies developed for minimization of excess sludge production, such as oxic-settling-anaerobic process, high dissolved oxygen process, uncoupler-containing activated sludge process, ozonation-combined activated sludge process, control of sludge retention time and biodegradation of sludge in membrane-assisted reactor. In these modified activated sludge processes, excess sludge production can be reduced by 20-100% without significant effect on process efficiency and stability. It is expected that this paper would be helpful for researchers and engineers to develop novel and efficient operation strategy to minimize sludge production from biological systems.  相似文献   

10.
Demand for wastewater treatment facilities will increase as Jordan's population grows. In addition, currently available systems of treatment desperately need upgrades in capacity or supplementary systems; especially in the Amman-Zarqa region. Overall; based on the current wastewater flow rates; approximately 85% of the collected sewerage is treated in stabilization ponds, 10% in trickling filters, and 5% in activated sludge systems. This study was carried out to analyze and identify the properties of Jordanian wastewater; compare it to the common characteristics internationally known; and couple that with a proposal of an appropriate treatment technology. Five treatment plants were selected to achieve the objectives of this study; the flow rate of which constitutes approximately 80% of the total treated wastewater in Jordan, based on the design capacity. The study concluded that the wastewater generated in Jordan is classified as strong in terms of total dissolved solids content, total suspended solids content, and chemical and biochemical oxygen demands (COD and BOD). The efficiency of the selected technologies in removing dissolved solids from wastewater was low while it was reasonably high in terms of suspended solids removal. The technology achieving highest percent removals of BOD and solids was that of activated sludge and its modifications. Based on the factors considered in evaluating and selecting unit operations and processes, the activated sludge and its modifications are probably the process technology that should be used in treating Jordanian domestic wastewaters.  相似文献   

11.
ABSTRACT: BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.  相似文献   

12.
活性污泥中微生物群落内部关系非常复杂 ,及时对活性污泥中优势菌群和群落内部关系进行监测是污水处理中采取正确措施的关键。历史研究表明传统培养方法经常导致活性污泥优势菌群检测的失败 ,而r RNA- targeted寡核苷酸探针作为一种快速原位监测活性污泥微生物群落结构和功能的新工具被引入 ,使我们对参与污水净化的微生物群落结构和优势菌群能有较全面的了解。就该方法在识别除磷污泥、脱氮污泥、污泥泡沫和膨胀污泥中微生物群落结构和功能的典型应用进行综述 ,分析了该方法存在的优点和缺点 ,并对目前已建立且应用于活性污泥微生物检测的 r RNA- targeted寡核苷酸探针进行了详细总结  相似文献   

13.
活性污泥抗生素抗性基因研究进展   总被引:5,自引:0,他引:5  
抗生素抗性在全球范围内的传播扩散严重威胁人类健康。活性污泥是污水处理系统重要的处理工艺,同时也是抗生素抗性及其发生水平基因转移的一个重要储库和热区。目前,随着研究手段和技术的不断更新,活性污泥中抗生素抗性的研究不断增加,但是仍有许多科学问题亟待解决。本文主要针对活性污泥抗生素抗性的5个主要方面进行深入讨论:(1)活性污泥中抗性基因的丰度和分布的影响因素;(2)污泥抗性基因的研究方法;(3)活性污泥抗性基因的传播与扩散;(4)污泥中抗性基因环境风险评估;(5)研究展望。本综述在活性污泥抗生素抗性研究基础上,阐述了驱动抗生素抗性扩散的基本微生物生态过程研究进展,旨在为污水处理工艺的发展和优化及抗性基因控制政策的制定提供科学基础。  相似文献   

14.
活性污泥微生物菌群研究方法进展   总被引:20,自引:0,他引:20  
活性污泥是活性污泥法处理污水系统的功能主体。人类对活性污泥微生物菌群的认识随着其研究方法的发展而逐步深入。传统培养方法只能检测到活性污泥中1%~15%的微生物。随着一系列基于免培养的分子生物学技术的出现,活性污泥中菌群的复杂性和多样性以惊人的速度被人们认识,大量依靠传统检测方法未能发现却在活性污泥中起关键作用的微生物逐渐被发现。许多模拟活性污泥菌群生存环境条件的现代培养技术开始发展,且已成功培养了一部分传统培养方法不能培养的细菌类群,这为研究基于免培养方法发现的大量新的微生物菌群的生理特性和作用机制提供了可能,也无疑将把人们对活性污泥菌群的认识推向一个新的层次.主要介绍活性污泥微生物菌群研究的一系列方法,从传统培养方法到基于免培养的现代分子生物学技术,再到现代培养技术,着重论述了现代分子生物学技术及其在活性污泥微生物菌群研究中的进展。  相似文献   

15.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. In this work, we used a new mixture of selected sourdough lactobacilli and fungal proteases to eliminate the toxicity of wheat flour during long-time fermentation. Immunological (R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay [ELISA] and R5 antibody-based Western blot), two-dimensional electrophoresis, and mass spectrometry (matrix-assisted laser desorption ionization-time of flight, strong-cation-exchange-liquid chromatography/capillary liquid chromatography-electrospray ionization-quadrupole-time of flight [SCX-LC/CapLC-ESI-Q-TOF], and high-pressure liquid chromatography-electrospray ionization-ion trap mass spectrometry) analyses were used to determine the gluten concentration. Assays based on the proliferation of peripheral blood mononuclear cells (PBMCs) and gamma interferon production by PBMCs and intestinal T-cell lines (iTCLs) from 12 celiac disease patients were used to determine the protein toxicity of the pepsin-trypsin digests from fermented wheat dough (sourdough). As determined by R5-based sandwich and competitive ELISAs, the residual concentration of gluten in sourdough was 12 ppm. Albumins, globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. Low-molecular-weight epitopes were not detectable by SCX-LC/CapLC-ESI-Q-TOF mass spectrometry and R5-based Western blot analyses. The kinetics of the hydrolysis of the 33-mer by lactobacilli were highly efficient. All proteins extracted from sourdough activated PBMCs and induced gamma interferon production at levels comparable to the negative control. None of the iTCLs demonstrated immunoreactivity towards pepsin-trypsin digests. Bread making was standardized to show the suitability of the detoxified wheat flour. Food processing by selected sourdough lactobacilli and fungal proteases may be considered an efficient approach to eliminate gluten toxicity.  相似文献   

16.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. In this work, we used a new mixture of selected sourdough lactobacilli and fungal proteases to eliminate the toxicity of wheat flour during long-time fermentation. Immunological (R5 antibody-based sandwich and competitive enzyme-linked immunosorbent assay [ELISA] and R5 antibody-based Western blot), two-dimensional electrophoresis, and mass spectrometry (matrix-assisted laser desorption ionization-time of flight, strong-cation-exchange-liquid chromatography/capillary liquid chromatography-electrospray ionization-quadrupole-time of flight [SCX-LC/CapLC-ESI-Q-TOF], and high-pressure liquid chromatography-electrospray ionization-ion trap mass spectrometry) analyses were used to determine the gluten concentration. Assays based on the proliferation of peripheral blood mononuclear cells (PBMCs) and gamma interferon production by PBMCs and intestinal T-cell lines (iTCLs) from 12 celiac disease patients were used to determine the protein toxicity of the pepsin-trypsin digests from fermented wheat dough (sourdough). As determined by R5-based sandwich and competitive ELISAs, the residual concentration of gluten in sourdough was 12 ppm. Albumins, globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. Low-molecular-weight epitopes were not detectable by SCX-LC/CapLC-ESI-Q-TOF mass spectrometry and R5-based Western blot analyses. The kinetics of the hydrolysis of the 33-mer by lactobacilli were highly efficient. All proteins extracted from sourdough activated PBMCs and induced gamma interferon production at levels comparable to the negative control. None of the iTCLs demonstrated immunoreactivity towards pepsin-trypsin digests. Bread making was standardized to show the suitability of the detoxified wheat flour. Food processing by selected sourdough lactobacilli and fungal proteases may be considered an efficient approach to eliminate gluten toxicity.  相似文献   

17.
The main purpose of this paper is to study naphthalene (NAP) biodegradation by acclimated activated sludge, employing the culture-enrichment method in a continuous flow bioreactor of the wastewater treatment process. The effects of various COD loadings and influent flow rates of an artificial wastewater containing 15 mg l−1 NAP on the biodegradation rates of the activated sludge will be investigated, in order to determine the biodegradation kinetics and minimum mean cell residence time of the activated sludge. From the experimental results, it was found that the resulting enriched activated sludge follows the growth rate of the Monod type and can biodegrade those COD and NAP loadings in the influents efficiently, and its bio-treatment efficiency on NAPs increases with the decrease of influent flow rate. The sludge volume index (SVI) of the resulting enriched activated sludge meets the design value required by the convectional activated sludge process for the treatment of wastewater.  相似文献   

18.
This study aims at development of an approach for selection of strain, which has capability for oxidation of broad-range of chloro-substitute phenols. A multiplex PCR was optimized targeting loci involved in phenol and chlorophenol degradation, which was used to select activated sludge samples and also to assess the degradative genotype of isolates. The isolated strains were screened on the basis of RAPD analysis. In parallel, physiological experiments were carried out with activated sludge samples and isolated bacteria by respirometric analysis. Based on cluster analysis of RAPD pattern and respirometric data, the isolate G20 was selected and identified by using 16S rDNA sequence analysis as Citrobacter freundii strain HPC255. The strain could oxidize different substituted chlorophenol molecules. Such strains could provide the pool of intermediates, which can further be degraded by the associated population, thus helping in maintaining the synergistic association of catabolic activity in activated sludge.  相似文献   

19.
Agar plating media containing solely activated sludge extracts yielded, in general, higher viable counts of activated sludge bacteria than any other culture medium tested. Activated sludge extracts made from different treatment plants varied in efficacy in evoking maximal viable counts. Frequently, homologous plating, i.e., plating inocula of activated sludges on extracts made from the same activated sludges, tended to yield lower counts than the heterologous platings tried in this investigation. The counts obtained by homologous plating of activated sludge were not significantly lower and sometimes were even significantly higher than the counts obtained on standard Nutrient Agar, which had been found by previous workers to be a good medium for counting activated sludge bacteria. The higher counts obtained with activated sludge extracts set objectives for formulating reproducible or defined culture media for the enumeration of activated sludge bacteria.  相似文献   

20.
AIMS: The aim of this study was to evaluate interactions between Saccharomyces cerevisiae and selected strains of lactobacilli regarding cell viabilities, and production of organic acids and ethanol during fermentation. METHODS AND RESULTS: Corn mashes were inoculated with yeasts and selected strains of lactobacilli, and fermented in batch or semi-continuous (cascade) mode. Ethanolic fermentation rates and viabilities of yeast were not affected by lactobacilli unless the mash was pre-cultured with lactobacilli. Then, yeast growth was inhibited and the production of ethanol was reduced by as much as 22%. CONCLUSION: Yeasts inhibited the multiplication of lactobacilli and this resulted in reduced production of acetic and lactic acids. The self-regulating nature of the cascade system allowed the yeast to recover, even when the lactobacilli had a head start, and reduced the size of the population of the contaminating Lactobacillus to a level which had an insignificant effect on fermentation rate or ethanol yield. SIGNIFICANCE AND IMPACT OF THE STUDY: Contamination during fermentation is normally taken care of by the large yeast inoculum, although yeast growth and fermentation rates could be adversely affected by the presence of high numbers of lactobacilli in incoming mash or in transfer lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号