首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive nisin quantification bioassay was constructed, based on Lactococcus lactis chromosomally encoding the nisin regulatory proteins NisK and NisR and a plasmid with a green fluorescent protein (GFP) variant gfp(uv) gene under the control of the nisin-inducible nisA promoter. This strain, LAC275, was capable of transducing the signal from extracellular nisin into measurable GFPuv fluorescence through the NisRK signal transduction system. The LAC275 cells detected nisin concentrations of 10 pg/ml in culture supernatant, 0.2 ng/ml in milk, 3.6 ng/g in processed cheese, 1 ng/g in salad dressings and crushed, canned tomatoes, and 2 ng/g in liquid egg. This method was up to 1,000 times more sensitive than a previously described GFP-based nisin bioassay. This new assay made it possible to detect significantly smaller amounts of nisin than the presently most sensitive published nisin bioassay based on nisin-induced bioluminescence. The major advantage of this sensitivity was that foods could be extensively diluted prior to the assay, avoiding potential inhibitory and interfering substances present in most food products.  相似文献   

2.
3.
乳链菌素生物合成基因启动子的结构、功能与应用研究   总被引:1,自引:0,他引:1  
乳酸乳球菌 (Lactococcuslactis)中的乳链菌素 (Nisin)的生物合成由含 1 1个基因的基因簇nisA(或Z)BTCIPRKFEG控制。在这个基因簇共有 3个启动子 :nisA启动子 ,nisF启动子和nisR启动子 ,科学家已经克隆了它们并对其结构与功能进行了研究 .nisR启动子是组成型表达的 ,而nisA/nisF启动子由应答调控蛋白NisR和组氨酸激酶NisK所组成的双组分调控系统调控表达 :NisK接受外源nisin信号 ,自身磷酸化后将磷酸基团递给NisR ,NisR激活nisA/nisF启动子 ,进行下游基因的转录。利用这种特点 ,开发出了能在革兰氏阳性菌中可诱导表达的质粒载体 ,包括单质粒载体系统和双质粒载体系统 ,它们在理论及应用研究上具有很大的价值。  相似文献   

4.
Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of D-alanine and L-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Deltaalr) showed auxotrophy for D-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented D-alanine auxotrophy in the L. plantarum Deltaalr and L. lactis Deltaalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to D-cycloserine, a competitive inhibitor of Alr (600 and 200 micro g/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that D-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Deltaalr. The resulting strain could grow in the absence of D-alanine only when expression of the alr gene was induced with nisin.  相似文献   

5.
6.
7.
【背景】乳链菌肽主要是由乳酸乳球菌生产的一类多肽,对革兰氏阳性菌有抑菌作用,是目前联合国粮食及农业组织/世界卫生组织唯一批准使用的天然食品防腐剂。但是其产量低、缺乏简便高效的检测方法,限制了其研究和应用。【目的】构建一种可输出肉眼可见红色荧光的细胞分子传感器,以期能简单方便地检测样品中的乳链菌肽,同时应用该传感器筛选乳链菌肽生产菌株。【方法】用Golden-Gate克隆方法构建含乳链菌肽诱导启动子和下游红色荧光蛋白基因(两种)的载体,转入Lactococcus lactis中。用细胞传感器筛选可能的乳链菌肽生产菌株。【结果】构建的两种乳链菌肽细胞分子传感器都能对2-200 ng/mL乳链菌肽有灵敏的响应,可用于定量测定。两种传感器的最大荧光强度和表型也有所不同。利用细胞传感器确定了Lactococcus lactis ATCC 11454乳链菌肽的产生,同时排除了一个能产其他抗菌化合物的菌株。【结论】构建的细胞分子传感器能特异性地响应乳链菌肽,并能简单快速地筛选乳链菌肽菌株。  相似文献   

8.
The lantibiotic nisin is a ribosomally synthesised and post-translationally modified antimicrobial peptide produced by strains of Lactococcus lactis, and used as safe and natural preservative in food industry. The nisA structural gene encodes ribosomally synthesised and biologically inactive a 57 amino acid precursor peptide (NisA) which undergoes several post-translational modifications. In this study, we report the expression of precursor nisin as a His6-tagged peptide in Escherichia coli and its purification using a nickel affinity column. The technique of spliced-overlap extension PCR was used to amplify the nisA gene and the T7 promoter region of pET-15b vector. This approach was used to introduce six histidine residues at the C-terminus of prenisin. The identity of the expressed peptide was confirmed by N-terminal sequencing. The expressed His-tagged prenisin was purified under denaturing conditions, and named as prenisin-His6. The purified prenisin-His6 was analyzed by SDS-PAGE, Western blotting and mass spectroscopy. These results showed that the nisin precursor peptide can be successfully produced using an E. coli expression system.  相似文献   

9.
Analysis of the sequence of a randomly cloned chromosomal DNA fragment (3.2 kb) from Lactococcus lactis revealed the presence of part of an open reading frame, designated amd1, which specifies a protein displaying significant similarity to aminoacylases from various bacteria. The presence of an immobilised copy of an IS982 element immediately upstream of the coding region of amd1 has probably resulted in the displacement of amd1's native promoter. This genetic organisation was shown to be retained in seven other dairy strains, one of which was only slightly different. The amd1 gene was overexpressed in L. lactis NZ9800 under the control of the inducible nisA promoter and the deacetylating capacity of its gene product was measured on a number of substrates.  相似文献   

10.
11.
Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 106 IU/mg that were acceptable for further clinical studies.  相似文献   

12.
食品级高效诱导表达系统-NICE系统   总被引:1,自引:0,他引:1  
乳酸菌NICE系统是在乳链菌肽诱导下由nisA启动子控制目的基因表达的,含nisR和nisK的两组分调节系统的高效诱导表达系统。由于NICE系统的诱导剂、宿主菌和载体都是食品级的,其应用前景十分广阔。  相似文献   

13.
Murine polyclonal antibodies reactive to the lantibiotic bacteriocin nisin A (nisA) have been produced by immunization with nisA-cholera toxin and nisA-keyhole limpet hemocyanin (nisA-KLH) conjugates. Mice immunized with nisA-cholera toxin developed nisA-specific antibodies with low relative affinities and poor sensitivities, while the immunization of mice with nisA-KLH conjugates resulted in the production of nisA-specific antibodies with high relative affinities and much-increased sensitivities. nisA antibodies could also be readily mass produced in less than 8 weeks in ascites fluid by using the nisA-KLH conjugate. A competitive direct enzyme-linked immunosorbent assay (ELISA) whereby nisA-horseradish peroxidase and free nisA competed for antibody binding was devised. The detection limit for nisA in the competitive direct ELISA with the nisA-KLH-generated antibodies was from 5 to 100 ng/ml, while the amount of free nisA required for 50% antibody binding inhibition ranged from 0.3 to 5 micrograms /ml. Both antisera and ascites polyclonal antibodies cross-reacted with nisZ either in the supernatant of a producer strain or with the pure lantibiotic but did not cross-react at all with non-lantibiotic-type bacteriocins. These polyclonal antibodies should find a wide usage from nisA ELISA analysis in foods and other matrices.  相似文献   

14.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

15.
A sensitive nisin quantification bioassay was constructed, based on Lactococcus lactis chromosomally encoding the nisin regulatory proteins NisK and NisR and a plasmid with a green fluorescent protein (GFP) variant gfpuv gene under the control of the nisin-inducible nisA promoter. This strain, LAC275, was capable of transducing the signal from extracellular nisin into measurable GFPuv fluorescence through the NisRK signal transduction system. The LAC275 cells detected nisin concentrations of 10 pg/ml in culture supernatant, 0.2 ng/ml in milk, 3.6 ng/g in processed cheese, 1 ng/g in salad dressings and crushed, canned tomatoes, and 2 ng/g in liquid egg. This method was up to 1,000 times more sensitive than a previously described GFP-based nisin bioassay. This new assay made it possible to detect significantly smaller amounts of nisin than the presently most sensitive published nisin bioassay based on nisin-induced bioluminescence. The major advantage of this sensitivity was that foods could be extensively diluted prior to the assay, avoiding potential inhibitory and interfering substances present in most food products.  相似文献   

16.
A specific method to identify nisin-producing strains was developed based on Nisin-Controlled gene Expression (NICE) vector pSec:Nuc. The plasmid pSec:Nuc was transformed into non-nisin-producing strain Lactococcus lactis NZ9000, a host commonly used for the NICE system. The generating strain L. lactis NZ9000/pSec:Nuc could sense extracellular inducer nisin and efficiently secrete a reporter protein Nuc, the staphylococcal nuclease (Nuc) into the medium. Instead of using purified nisin, the culture supernatants of nisin-producing strains were also used as inducers. Therefore, the NICE system could be used to identify nisin-producing strains. With this principle, 4 among 56 lactococci strains isolated from raw milk were identified as nisin producers. The results were further confirmed by polymerase chain reaction amplification with their genomic DNA as templates, and nucleotide sequencing revealed that three of them produced nisin A, and the others produced nisin Z. Those results made it possible to isolate and identify nisin-producing strains specifically and rapidly using NICE system.  相似文献   

17.
The introduction of chimeric genes encoding the fusion leader of lactococcin A-propediocin PA-1 or procolicin V under the control of the inducible nisA promoter and the lactococcin A-dedicated secretion genes (lcnCD) into Lactococcus lactis strains, including a nisin producer, expressing the two component regulator NisRK led to the production or pediocin PA-1 or colicin V, respectively.  相似文献   

18.
Biosynthesis of the lantibiotic peptide nisin by Lactococcus lactis NIZO R5 relies on the presence of the conjugative transposon Tn5276 in the chromosome. A 12-kb DNA fragment of Tn5276 including the nisA gene and about 10 kb of downstream DNA was cloned in L. lactis, resulting in the production of an extracellular nisin precursor peptide. This peptide reacted with antibodies against either nisin A or the synthetic leader peptide, suggesting that it consisted of a fully modified nisin with the nisin leader sequence still attached to it. This structure was confirmed by N-terminal sequencing and 1H-nuclear magnetic resonance analysis of the purified peptide. Deletion studies showed that the nisR gene is essential for the production of this intermediate. The deduced amino acid sequence of the nisR gene product indicated that the protein belongs to the family of two-component regulators. The deduced amino acid sequence of NisP, the putative product of the gene upstream of nisR, showed an N-terminal signal sequence, a catalytic domain with a high degree of similarity to those of subtilisin-like serine proteases, and a putative C-terminal membrane anchor. Cell extracts of Escherichia coli overexpressing nisP were able to cleave the nisin precursor peptide, producing active, mature nisin. A similar activation was obtained with whole cells but not with membrane-free extracts of L. lactis strains carrying Tn5276 in which the nisA gene had been inactivated. The results indicate that the penultimate step in nisin biosynthesis is secretion of precursor nisin without cleavage of the leader peptide, whereas the last step is the cleavage of the leader peptide sequence from the fully maturated nisin peptide.  相似文献   

19.
Lactic acid bacteria are widely used in industrial fermentation. The potential use of these bacteria as homologous and heterologous protein expression hosts has been investigated extensively. The NIsin-Controlled gene Expression system (the NICE system) is an efficient and promising gene expression system based on the autoregulation mechanism of nisin biosynthesis in the Lactococcus lactis. In the NICE system, the membrane-located histidine kinase NisK senses the inducing signal nisin and autophosphorylates, then transfers phosphorous group to intracellular response regulator protein NisR which activates nisA promoter to express the downstream gene(s). The NICE system allows regulated overproduction of a variety of interest proteins by several Gram-positive bacteria, especially L. lactis. The essential elements for system construction, its application for expression of some biotechnologically important proteins and further improvements of this system are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号