首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bryant JE  Lecomte JT  Lee AL  Young GB  Pielak GJ 《Biochemistry》2006,45(33):10085-10091
Cells are crowded with macromolecules, yet most biophysical information about proteins is obtained in dilute solution. To determine the impact of this dichotomy, we used nuclear magnetic resonance spectroscopy to measure the backbone (15)N T(1) and T(2) relaxation times and the {(1)H}-(15)N nuclear Overhauser enhancement (nOe) of uniformly (15)N-enriched apocytochrome b(5) in living Escherichia coli and in dilute solution. These data allowed us to assess the backbone dynamics of this partially folded protein in cells and in dilute solution. The two data sets were analyzed by using the model-free approach. Transfer from dilute solution to the cytosol has a quantitative effect on T(1), T(2), and nOe values. Most of the effects are attributed to an increase in the overall correlation time, caused by the increased viscosity of the cytosol compared to that of the dilute solution. Our main conclusion is that the cytosol does not alter the pattern of backbone dynamics of apocytochrome b(5). Increases in the time scale of both the picosecond and millisecond motions are observed, but the increases are less than approximately 30%.  相似文献   

2.
The native intracellular environment of proteins is crowded with metabolites and macromolecules. However, most biophysical information concerning proteins is acquired in dilute solution. To determine whether there are differences in dynamics, nuclear magnetic resonance spectroscopy can be used to measure 15N relaxation in uniformly 15N-enriched apocytochrome b5 inside living Escherichia coli and in dilute solution. Such data can then be used to compare the fast backbone dynamics of the partially folded protein in cells to its dynamics in dilute solution by using Lipari-Szabo analysis. It appears that the intracellular environment does not alter the protein's structure, or significantly change its fast dynamics. Specifically, the cytosol does not change the amplitude of fast backbone motions, but does increase the average timescale of these motions, most likely due to the increase in viscosity of the cytosol.  相似文献   

3.
We examined the internal mobility of the estrogen receptor DNA-binding domain (ER DBD) using NMR15N relaxation measurements and compared it to that of the glucocorticoid receptor DNA-binding domain (GR DBD). The studied protein fragments consist of residues Arg183-His267 of the human ER and residues Lys438-Gln520 of the rat GR. The15N longitudinal (R1) and transverse (R2) relaxation rates and steady state {1H}-15N nuclear Overhauser enhancements (NOEs) were measured at 30 degrees C at1H NMR frequencies of 500 and 600 MHz. The NOE versus sequence profile and calculated order parameters for ER DBD backbone motions indicate enhanced internal dynamics on pico- to nanosecond time-scales in two regions of the core DBD. These are the extended strand which links the DNA recognition helix to the second zinc domain and the larger loop region of the second zinc domain. The mobility of the corresponding regions of the GR DBD, in particular that of the second zinc domain, is more limited. In addition, we find large differences between the ER and GR DBDs in the extent of conformational exchange mobility on micro- to millisecond time-scales. Based on measurements of R2as a function of the15N refocusing (CPMG) delay and quantitative (Lipari-Szabo-type) analysis, we conclude that conformational exchange occurs in the loop of the first zinc domain and throughout most of the second zinc domain of the ER DBD. The conformational exchange dynamics in GR DBD is less extensive and localized to two sites in the second zinc domain. The different dynamical features seen in the two proteins is consistent with previous studies of the free state structures in which the second zinc domain in the ER DBD was concluded to be disordered whereas the corresponding region of the GR DBD adopts a stable fold. Moreover, the regions of the ER DBD that undergo conformational dynamics on the micro- to millisecond time-scales in the free state are involved in intermolecular protein-DNA and protein-protein interactions in the dimeric bound state. Based on the present data and the previously published dynamical and DNA binding properties of a GR DBD triple mutant which recognize an ER binding site on DNA, we argue that the free state dynamical properties of the nuclear receptor DBDs is an important element in molecular recognition upon DNA binding.  相似文献   

4.
Binding of Ca(2+) to the regulatory domain of troponin C (TnC) in cardiac muscle initiates a series of protein conformational changes and modified protein-protein interactions that initiate contraction. Cardiac TnC contains two Ca(2+) binding sites, with one site being naturally defunct. Previously, binding of Ca(2+) to the functional site in the regulatory domain of TnC was shown to lead to a decrease in conformational entropy (TDeltaS) of 2 and 0.5 kcal mol(-1) for the functional and nonfunctional sites, respectively, using (15)N nuclear magnetic resonance (NMR) relaxation studies [Spyracopoulos, L., et al. (1998) Biochemistry 37, 18032-18044]. In this study, backbone dynamics of the Ca(2+)-free regulatory domain are investigated by backbone amide (15)N relaxation measurements at eight temperatures from 5 to 45 degrees C. Analysis of the relaxation measurements yields an order parameter (S(2)) indicating the degree of spatial restriction for a backbone amide H-N vector. The temperature dependence of S(2) allows estimation of the contribution to protein heat capacity from pico- to nanosecond time scale conformational fluctuations on a per residue basis. The average heat capacity contribution (C(p,j)) from backbone conformational fluctuations for regions of secondary structure for the regulatory domain of cardiac apo-TnC is 6 cal mol(-1) K(-1). The average heat capacity for Ca(2+) binding site 1 is larger than that for site 2 by 1.3 +/- 0.8 cal mol(-1) K(-1), and likely represents a mechanism where differences in affinity between Ca(2+) binding sites for EF hand proteins can be modulated.  相似文献   

5.
Using heteronuclear NMR spectroscopy, we studied the solution structure and dynamics of bovine beta-lactoglobulin A at pH 2.0 and 45 degrees C, where the protein exists as a monomeric native state. The monomeric NMR structure, comprising an eight-stranded continuous antiparallel beta-barrel and one major alpha-helix, is similar to the X-ray dimeric structure obtained at pH 6.2, including betaI-strand that forms the dimer interface and loop EF that serves as a lid of the interior hydrophobic hole. [1H]-15N NOE revealed that betaF, betaG, and betaH strands buried under the major alpha-helix are rigid on a pico- to nanosecond time scale and also emphasized rapid fluctuations of loops and the N- and C-terminal regions.  相似文献   

6.
The backbone dynamics of the bacteriorhodopsin fragment (1–36)BR solubilized in a 1:1 chloroform/methanol mixture were investigated by heteronuclear 1H-15N NMR spectroscopy. The heteronuclear 15N longitudinal and transverse relaxation rates and 15N{1H} steady-state NOEs were measured at three magnetic fields (11.7, 14.1, and 17.6 T). Careful statistical analysis resulted in the selection of the extended model-free form of the spectral density function [Clore et al. (1990) J. Am. Chem. Soc., 112, 4989–4991] for all the backbone amides of (1–36)BR. The peptide exhibits motions on the micro-, nano-, and picosecond time scales. The dynamics of the -helical part of the peptide (residues 9–31) are characterised by nanosecond and picosecond motions with mean order parameters S s 2 = 0.60 and S f 2 = 0.84, respectively. The nanosecond motions were attributed to the peptide's helix-coil transitions in equilibrium. Residues 3–7 and 30–35 also exhibit motions on the pico- and nanosecond time scales, but with lower order parameters. Residue 10 at the beginning of the -helix and residues 30–35 at the C-terminus are involved in conformational exchange processes on the microsecond time scale. The implications of the obtained results for the studies of helix-coil transitions and the dynamics of membrane proteins are discussed.  相似文献   

7.
Pilin is the major structural protein that forms type IV pili of various pathogenic bacteria, including Pseudomonas aeruginosa. Pilin is involved in attachment of the bacterium to host cells during infection, in the initiation of immune response, and serves as a receptor for a variety of bacteriophage. We have used (15)N nuclear magnetic resonance relaxation measurements to probe the backbone dynamics of an N-terminally truncated monomeric pilin from P. aeruginosa strain K122-4. (15)N-T(1), -T(2), and [(1)H]-(15)N nuclear Overhauser enhancement measurements were carried out at three magnetic field strengths. The measurements were interpreted using the Lipari-Szabo model-free analysis, which reveals the amplitude of spatial restriction for backbone N-NH bond vectors with respect to nano- to picosecond time-scale motions. Regions of well-defined secondary structure exhibited consistently low-amplitude spatial fluctuations, while the terminal and loop regions showed larger amplitude motions in the subnano- to picosecond time-scale. Interestingly, the C-terminal disulfide loop region that contains the receptor binding domain was found to be relatively rigid on the pico- to nanosecond time-scale but exhibited motion in the micro- to millisecond time-scale. It is notable that this disulfide loop displays a conserved antigenic epitope and mediates binding to the asialo-GM(1) cell surface receptor. The present study suggests that a rigid backbone scaffold mediates attachment to the host cell receptor, and also maintains the conformation of the conserved antigenic epitope for antibody recognition. In addition, slower millisecond time-scale motions are likely to be crucial for conferring a range of specificity for these interactions. Characterization of pilin dynamics will aid in developing a detailed understanding of infection, and will facilitate the design of more efficient anti-adhesin synthetic vaccines and therapeutics against pathogenic bacteria containing type IV pili.  相似文献   

8.
15N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of 15N chemical shielding can be obtained from 15N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from 15N-(1)H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring 15N relaxation in deuterated amide groups in proteins, where the dipolar contribution to 15N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in 15N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse 15N relaxation for backbone amides in protein G in D(2)O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional 15N relaxation measurements in H(2)O. This analysis revealed a 17-24 degree angle between the NH-bond and the unique axis of the 15N chemical shielding tensor.  相似文献   

9.
Metcalfe EE  Traaseth NJ  Veglia G 《Biochemistry》2005,44(11):4386-4396
Phospholamban (PLB) is a 52 amino acid membrane-endogenous regulator of the sarco(endo)plasmic calcium adenosinetriphosphatase (SERCA) in cardiac muscle. PLB's phosphorylation and dephosphorylation at S16 modulate its regulatory effect on SERCA by an undetermined mechanism. In this paper, we use multidimensional (1)H/(15)N solution NMR methods to establish the structural and dynamics basis for PLB's control of SERCA upon S16 phosphorylation. For our studies, we use a monomeric, fully active mutant of PLB, where C36, C41, and C46 have been mutated to A36, F41, and A46, respectively. Our data show that phosphorylation disrupts the "L-shaped" structure of monomeric PLB, causing significant unwinding of both the cytoplasmic helix (domain Ia) and the short loop (residues 17-21) connecting this domain to the transmembrane helix (domains Ib and II). Concomitant with this conformational transition, we also find pronounced changes in both the pico- to nanosecond and the micro- to millisecond time scale dynamics. The (1)H/(15)N heteronuclear NOE values for residues 1-25 are significantly lower than those of unphosphorylated PLB, with slightly lower NOE values in the transmembrane domain, reflecting less restricted motion throughout the whole protein. These data are supported by the faster spin-lattice relaxation rates (R(1)) present in both the cytoplasmic and loop regions and by the enhanced spin-spin transverse relaxation rates (R(2)) observed in the transmembrane domain. These results demonstrate that while S16 phosphorylation induces a localized structural transition, changes in PLB's backbone dynamics are propagated throughout the protein backbone. We propose that the regulatory mechanism of PLB phosphorylation involves an order-to-disorder transition, resulting in a decrease in the PLB inhibition of SERCA.  相似文献   

10.
In this work we compare the dynamics and conformational stability of Pseudomonas mendocina lipase enzyme and its F180P/S205G mutant that shows higher activity and stability for use in washing powders. Our NMR analyses indicate virtually identical structures but reveal remarkable differences in local dynamics, with striking correspondence between experimental data (i.e., (15)N relaxation and H/D exchange rates) and data from Molecular Dynamics simulations. While overall the cores of both proteins are very rigid on the pico- to nanosecond timescale and are largely protected from H/D exchange, the two point mutations stabilize helices alpha1, alpha4, and alpha5 and locally destabilize the H-bond network of the beta-sheet (beta7-beta9). In particular, it emerges that helix alpha5, undergoing some fast destabilizing motions (on the pico- to nanosecond timescale) in wild-type lipase, is substantially rigidified by the mutation of Phe180 for a proline at its N terminus. This observation could be explained by the release of some penalizing strain, as proline does not require any "N-capping" hydrogen bond acceptor in the i+3 position. The combined experimental and simulated data thus indicate that reduced molecular flexibility of the F180P/S205G mutant lipase underlies its increased stability, and thus reveals a correlation between microscopic dynamics and macroscopic thermodynamic properties. This could contribute to the observed altered enzyme activity, as may be inferred from recent studies linking enzyme kinetics to their local molecular dynamics.  相似文献   

11.
Protein dynamics and thermodynamics can be characterized through measurements of relaxation rates of side chain (2)H and (13)C, and backbone (15)N nuclei using NMR spectroscopy. The rates reflect protein motions on timescales from picoseconds to milliseconds. Backbone and methyl side chain NMR relaxation measurements for several proteins are beginning to reveal the role of protein dynamics in protein stability and ligand binding.  相似文献   

12.
Colicin A protein kills cells by opening voltage-dependent ion channels in the cytoplasmic membrane. The C-terminal domain of colicin A retains the full protein’s ability to form membrane pores, making it an excellent model for in vitro studies of protein-membrane interaction. We report here the NMR assignment and backbone dynamics of this domain in solution. The chemical shifts identify ten α-helices that match those observed in the crystal structure, while the 15N{1H} NOEs show differential fast mobility for some of the inter-helical loops and the chain ends. This analysis provides the basis for further NMR studies of this channel forming protein and its interactions.  相似文献   

13.
Src-homology-2 domains are small, 100 amino acid protein modules that are present in a number of signal transduction proteins. Previous NMR studies of SH2 domain dynamics indicate that peptide binding decreases protein motions in the pico- to nanosecond, and perhaps slower, time range. We suggest that amide hydrogen exchange and mass spectrometry may be useful for detecting changes in protein dynamics because hydrogen exchange rates are relatively insensitive to the time domains of the dynamics. In the present study, hydrogen exchange and mass spectrometry were used to probe hematopoietic cell kinase SH2 that was either free or bound to a 12-residue high-affinity peptide. Hydrogen exchange rates were determined by exposing free and bound SH2 to D(2)O, fragmenting the SH2 with pepsin, and determining the deuterium level in the peptic fragments. Binding generally decreased hydrogen exchange along much of the SH2 backbone, indicating a widespread reduction in dynamics. Alterations in the exchange of the most rapidly exchanging amide hydrogens, which was detected following acid quench and analysis by mass spectrometry, were used to locate differences in low-amplitude motion when SH2 was bound to the peptide. In addition, the results indicate that hydrogen exchange from the folded form of SH2 is an important process along the entire SH2 backbone.  相似文献   

14.
The backbone dynamics of bovine heart fatty acid binding protein (H-FABP) and porcine ileal lipid binding protein (ILBP) were studied by 15N NMR relaxation (T1 and T2) and steady state heteronuclear 15N{1H} NOE measurements. The microdynamic parameters characterizing the backbone mobility were determined using the model-free approach. For H-FABP, the non-terminal backbone amide groups display a rather compact protein structure of low flexibility. In contrast, for ILBP an increased number of backbone amide groups display unusually high internal mobility. Furthermore, the data indicate a higher degree of conformational exchange processes in the sec-msec time range for ILBP compared to H-FABP. These results suggest significant differences in the conformational stability for these two structurally highly homologous members of the fatty acid binding protein family.  相似文献   

15.
We have used NMR spectroscopy to determine the three-dimensional (3D) structure, and to characterize the backbone dynamics, of a recombinant version of bovine beta-lactoglobulin (variant A) at pH 2. 6, where the protein is a monomer. The structure of this low-pH form of beta-lactoglobulin is very similar to that of a subunit within the dimer at pH 6.2. The root-mean-square deviation from the pH 6.2 (crystal) structure, calculated for backbone atoms of residues 6-160, is approximately 1.3 A. Differences arise from the orientation, with respect to the calyx, of the A-B and C-D loops, and of the flanking three-turn alpha-helix. The hydrophobic cavity within the calyx is retained at low pH. The E-F loop (residues 85-90), which moves to occlude the opening of the cavity over the pH range 7.2-6.2, is in the "closed" position at pH 2.6, and the side chain of Glu89 is buried. We also carried out measurements of (15)N T(1)s and T(2)s and (1)H-(15)N heteronuclear NOEs at pH 2.6 and 37 degrees C. Although the residues of the E-F loop (residues 86-89) have the highest crystallographic B-factors, the conformation of this loop is reasonably well defined by the NMR data, and its backbone is not especially mobile on the pico- to nanosecond time scale. Several residues (Ser21, Lys60, Ala67, Leu87, and Glu112) exhibit large ratios of T(1) to T(2), consistent with conformational exchange on a micro- to millisecond time scale. The positions of these residues in the 3D structure of beta-lactoglobulin are consistent with a role in modulating access to the hydrophobic cavity.  相似文献   

16.
Protein dynamics make important but poorly understood contributions to molecular recognition phenomena. To address this, we measure changes in fast protein dynamics that accompany the interaction of the arabinose-binding protein (ABP) with its ligand, d-galactose, using NMR relaxation and molecular dynamics simulation. These two approaches present an entirely consistent view of the dynamic changes that occur in the protein backbone upon ligand binding. Increases in the amplitude of motions are observed throughout the protein, with the exception of a few residues in the binding site, which show restriction of dynamics. These counter-intuitive results imply that a localised binding event causes a global increase in the extent of protein dynamics on the pico- to nanosecond timescale. This global dynamic change constitutes a substantial favourable entropic contribution to the free energy of ligand binding. These results suggest that the structure and dynamics of ABP may be adapted to exploit dynamic changes to reduce the entropic costs of binding.  相似文献   

17.
Yun S  Jang DS  Kim DH  Choi KY  Lee HC 《Biochemistry》2001,40(13):3967-3973
The backbone dynamics of Delta(5)-3-ketosteroid isomerase (KSI) from Pseudomonas testosteroni has been studied in free enzyme and its complex with a steroid ligand, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S(2), tau(e), and R(ex)) and the overall rotational correlation time (tau(m)). The rotational correlation times were 19.23 +/- 0.08 and 17.08 +/- 0.07 ns with the diffusion anisotropies (D( parallel)/D( perpendicular)) of 1.26 +/- 0.03 and 1.25 +/- 0.03 for the free and steroid-bound KSI, respectively. The binding of 19-NTHS to free KSI causes a slight increase in the order parameters (S(2)) for a number of residues, which are located mainly in helix A1 and strand B4. However, the majority of the residues exhibit reduced order parameters upon ligand binding. In particular, strands B3, B5, and B6, which have most of the residues involved in the dimer interaction, have the reduced order parameters in the steroid-bound KSI, indicating the increased high-frequency (pico- to nanosecond) motions in the intersubunit region of this homodimeric enzyme. Our results differ from those of previous studies on the backbone dynamics of monomeric proteins, in which high-frequency internal motions are typically restricted upon ligand binding.  相似文献   

18.
The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the (15)N and (13)C(alpha) R(1) and R(2) relaxation rates and steady-state [(1)H]-(15)N and [(1)H]-(13)C nuclear Overhauser effects (NOEs) using the model-free approach. The (13)C relaxation studies were performed using (13)C in natural abundance. Overall, it is found that the protein backbone is rigid. However, the regions that are important for the function of the protein show moderate mobility primarily on the microsecond to millisecond time scale. These regions are the "northern" hydrophobic site close to the metal site, the metal site itself, and the "eastern" face of the molecule. In particular, the mobility of the latter region is interesting in light of recent findings indicating that residues also on the eastern face of plastocyanins from prokaryotes are important for the function of the protein. The study also demonstrates that relaxation rates and NOEs of the (13)C(alpha) nuclei of proteins are valuable supplements to the conventional (15)N relaxation measurements in studies of protein backbone dynamics.  相似文献   

19.
Tripet BP  Goel A  Copie V 《Biochemistry》2011,50(23):5140-5153
Backbone amide dynamics of the Escherichia coli tryptophan repressor protein (WT-TrpR) and two functionally distinct variants, L75F-TrpR and A77V-TrpR, in their holo (l-tryptophan corepressor-bound) form have been characterized using (15)N nuclear magnetic resonance (NMR) relaxation. The three proteins possess very similar structures, ruling out major conformational differences as the source of their functional differences, and suggest that changes in protein flexibility are at the origin of their distinct functional properties. Comparison of site specific (15)N-T(1), (15)N-T(2), (15)N-{(1)H} nuclear Overhauser effect, reduced spectral density, and generalized order (S(2)) parameters indicates that backbone dynamics in the three holo-repressors are overall very similar with a few notable and significant exceptions for backbone atoms residing within the proteins' DNA-binding domain. We find that flexibility is highly restricted for amides in core α-helices (i.e., helices A-C and F), and a comparable "stiffening" is observed for residues in the DNA recognition helix (helix E) of the helix D-turn-helix E (HTH) DNA-binding domain of the three holo-repressors. Unexpectedly, amides located in helix D and in adjacent turn regions remain flexible. These data support the concept that residual flexibility in TrpR is essential for repressor function, DNA binding, and molecular recognition of target operators. Comparison of the (15)N NMR relaxation parameters of the holo-TrpRs with those of the apo-TrpRs indicates that the single-point amino acid substitutions, L75F and A77V, perturb the flexibility of backbone amides of TrpR in very different ways and are most pronounced in the apo forms of the three repressors. Finally, we present these findings in the context of other DNA-binding proteins and the role of protein flexibility in molecular recognition.  相似文献   

20.
Low molecular weight protein tyrosine phosphatase (LMW-PTP) dimerizes in the phosphate-bound state in solution with a dissociation constant of K(d)=1.5(+/-0.1)mM and an off-rate on the order of 10(4)s(-1). 1H and 15N NMR chemical shifts identify the dimer interface, which is in excellent agreement with that observed in the crystal structure of the dimeric S19A mutant. Two tyrosine residues of each molecule interact with the active site of the other molecule, implying that the dimer may be taken as a model for a complex between LMW-PTP and a target protein. 15N relaxation rates for the monomeric and dimeric states were extrapolated from relaxation data acquired at four different protein concentrations. Relaxation data of satisfactory precision were extracted for the monomer, enabling model-free analyses of backbone fluctuations on pico- to nanosecond time scales. The dimer relaxation data are of lower quality due to extrapolation errors and the possible presence of higher-order oligomers at higher concentrations. A qualitative comparison of order parameters in the monomeric and apparent dimeric states shows that loops forming the dimer interface become rigidified upon dimerization. Qualitative information on monomer-dimer exchange and intramolecular conformational exchange was obtained from the concentration dependence of auto- and cross-correlated relaxation rates. The loop containing the catalytically important Asp129 fluctuates between different conformations in both the monomeric and dimeric (target bound) states. The exchange rate compares rather well with that of the catalyzed reaction step, supporting existing hypotheses that catalysis and enzyme dynamics may be coupled. The side-chain of Trp49, which is important for substrate specificity, exhibits conformational dynamics in the monomer that are largely quenched upon formation of the dimer, suggesting that binding is associated with the selection of a single side-chain conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号