首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ancient Origin of the Parkinson Disease Gene LRRK2   总被引:1,自引:1,他引:0  
Dominant mutations in the LRRK2 gene, a member of the Roco family, cause both familial and sporadic Parkinson disease. LRRK genes had so far been detected only in bilaterian animals. In deuterostomes, including humans, two LRRK genes (LRRK1 and LRRK2) exist, while in protostomes a single LRRK gene has been found. In this study, I combine structural and phylogenetic analyses to show that the cnidarian Nematostella vectensis has four LRRK genes. One of them is a bona fide orthologue of the human LRRK2 gene, demonstrating that this gene has an ancient origin. Two others are, respectively, orthologues of the deuterostome LRRK1 and the protostome LRRK genes. The fourth gene is probably cnidarian-specific. This precise characterization of the early evolution of LRRK genes in animals has important implications, because it indicates that the Drosophila and Caenorhabditis LRRK genes, which are studied to gain an understanding of LRRK2 function, are not true orthologues of the human Parkinson disease gene. Novel functional insights are also gained by comparison of the structures of LRRK2 genes in distantly related species.  相似文献   

3.
Abstract. The starlet sea anemone, Nematostella vectensis , is a small burrowing estuarine animal, native to the Atlantic coast of North America. In recent years, this anemone has emerged as a model system in cnidarian developmental biology. Molecular studies of embryology and larval development in N. vectensis have provided important insights into the evolution of key metazoan traits. However, the adult body plan of N. vectensis may arise via four distinct developmental trajectories: (1) embryogenesis following sexual reproduction, (2) asexual reproduction via physal pinching, (3) asexual reproduction via polarity reversal, and (4) regeneration following bisection through the body column. Here, we compare the ontogenetic sequences underlying alternate developmental trajectories. Additionally, we describe the predictable generation of anomalous phenotypes that can occur following localized injuries to the body column. These studies suggest testable hypotheses on the molecular mechanisms underlying alternate developmental trajectories, and they provoke new questions about the evolution of novel developmental trajectories and their initiation via environmental cues.  相似文献   

4.
5.
This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for both genome-wide and in-depth analysis. This year, protein interaction networks have been used in a new bioinformatic approach to identify novel genes that extend replicative lifespan in yeast. In an extended approach, using a new, human protein interaction network, information from the invertebrates was used to identify new, candidate genes for lifespan extension and their orthologues were validated in the nematode Caenorhabditis elegans . Chemosensation of diffusible substances from bacteria has been shown to limit lifespan in C. elegans , while a systematic study of the different methods used to implement dietary restriction in the worm has shown that they involve mechanisms that are partially distinct and partially overlapping, providing important clarification for addressing whether or not they are conserved in other organisms. A new theoretical model for the evolution of rejuvenating cell division has shown that asymmetrical division for either cell size or for damaged cell constituents results in increased fitness for most realistic levels of cellular protein damage. Work on aging-related disease has both refined our understanding of the mechanisms underlying one route to the development of Parkinson's disease and has revealed that in worms, as in mice, dietary restriction is protective against cellular proteotoxicity. Two systematic studies genetically manipulating the superoxide dismutases of C. elegans support the idea that damage from superoxide plays little or no role in aging in this organism, and have prompted discussion of other kinds of damage and other kinds of mechanisms for producing aging-related decline in function.  相似文献   

6.
L Jiang  J Ni  Q Liu 《BMC genomics》2012,13(1):446
ABSTRACT: BACKGROUND: The selenocysteine (Sec) containing proteins, selenoproteins, are an important group of proteins present throughout all 3 kingdoms of life. With the rapid progression of selenoprotein research in the post-genomic era, application of bioinformatics methods to the identification of selenoproteins in newly sequenced species has become increasingly important. Although selenoproteins in human and other vertebrates have been investigated, studies of primitive invertebrate selenoproteomes are rarely reported outside of insects and nematodes. Result A more integrated view of selenoprotein evolution was constructed using several representative species from different evolutionary eras. Using a SelGenAmic-based selenoprotein identification method, 178 selenoprotein genes were identified in 6 invertebrates: Amphimedon queenslandica, Trichoplax adhaerens, Nematostella vectensis, Lottia gigantean, Capitella teleta, and Branchiostoma floridae. Amphioxus was found to have the most abundant and variant selenoproteins of any animal currently characterized, including a special selenoprotein P (SelP) possessing 3 repeated Trx-like domains and Sec residues in the N-terminal and 2 Sec residues in the C-terminal. This gene structure suggests the existence of two different strategies for extension of Sec numbers in SelP for the preservation and transportation of selenium. In addition, novel eukaryotic AphC-like selenoproteins were identified in sponges. CONCLUSION: Comparison of various animal species suggests that even the most primitive animals possess a selenoproteome range and variety similar to humans. During evolutionary history, only a few new selenoproteins have emerged and few were lost. Furthermore, the massive loss of selenoproteins in nematodes and insects likely occurred independently in isolated partial evolutionary branches.  相似文献   

7.
From genes to behaviour, the simple model system approach has played many pivotal roles in deciphering nervous system function in both invertebrates and vertebrates. However, with the advent of sophisticated imaging and recording techniques enabling the direct investigation of single vertebrate neurons, the utility of simple invertebrate organisms as model systems has been put to question. To address this subject meaningfully and comprehensively, we first review the contributions made by invertebrates in the field of neuroscience over the years, paving the way for similar breakthroughs in higher animals. In particular, we focus on molluscan (Lymnaea, Aplysia, and Helisoma) and leech (Hirudo) models and the pivotal roles they have played in elucidating mechanisms of synapse formation and plasticity. While the ultimate goal in neuroscience is to understand the workings of the human brain in both its normal and diseased states, the sheer complexity of most vertebrate models still makes it difficult to define the underlying principles of nervous system function. Investigators have thus turned to invertebrate models, which are unique with respect to their simple nervous systems that are endowed with a finite number of large, individually identifiable neurons of known function. We start off by discussing in vivo and semi-intact preparations, regarding their amenability to simple circuit analysis. Despite the 'simplicity' of invertebrate nervous systems however, it is still difficult to study individual synaptic connections in detail. We therefore emphasize in the next section, the utility of studying identified invertebrate neurons in vitro, to directly examine the development, specificity, and plasticity of synaptic connections in a well-defined environment, at a resolution that it is still unapproachable in the intact brain. We conclude with a discussion of the future of invertebrates in neuroscience in elucidating mechanisms of neurological disease and developing neuron-silicon interfaces.  相似文献   

8.
9.
Eleven of the twelve recognized wingless (Wnt) subfamilies are represented in the sea anemone Nematostella vectensis, indicating that this developmentally important gene family was already fully diversified in the common ancestor of 'higher' animals. In deuterostomes, although duplications have occurred, no novel subfamilies of Wnts have evolved. By contrast, the protostomes Drosophila and Caenorhabditis have lost half of the ancestral Wnts. This pattern -- loss of genes from an ancestrally complex state -- might be more important in animal evolution than previously recognized.  相似文献   

10.
11.
The starlet sea anemone Nematostella vectensis is an emerging model organism for developmental and evolutionary biology. Due to the availability of genome data and its amenability to genetic manipulation Nematostella serves as a source for comparative molecular and phylogenetic studies. Despite this fact, the characterization of the nematocyst inventory and of nematocyst-specific genes is still fragmentary and sometimes misleading in this cnidarian species. Here, we present a thorough qualitative and quantitative analysis of nematocysts in Nematostella vectensis. In addition, we have cloned major nematocyst components, Nematostella minicollagens 1, 3 and 4, and show their expression patterns by in situ hybridization and immunocytochemistry using specific antibodies. Our data provides tools and insights for further studies on nematocyst morphogenesis in Nematostella and comparative evolution in cnidarians.  相似文献   

12.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

13.
The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans.  相似文献   

14.
MicroRNAs与疾病和发育   总被引:1,自引:0,他引:1  
作为模式生物实验系统,线虫可用于研究控制动物发育和人类疾病遗传机制。研究发育缺陷的线虫突变体有助于在动物中发现对发育和生理过程有重要调控作用的基因。其中一些基因编码一类小RNA,如microRNA(miRNA),通过作用于特定基因信使RNA来调控其蛋白质表达。一些在线虫发育过程中有功能的miRNA在人体中也存在。它们参与调控与疾病相关的生物学过程,如癌症、糖尿病和神经退行性疾病。通过分析miRNA在临床样品、哺乳动物细胞和模式生物线虫中的表达,从而揭示miRNA调控途径在相关人类疾病中的功能。  相似文献   

15.
Inclusion body myositis (IBM) is the most common myopathy in people over 50 years of age. It involves an inflammatory process that, paradoxically, does not respond to anti-inflammatory drugs. A key feature of IBM is the presence of amyloid-β-peptide aggregates called amyloid deposits, which are also characteristic of Alzheimer’s disease. The use of animals that mimic at least some characteristics of a disease has become very important in the quest to elucidate the molecular mechanisms underlying this and other pathogeneses. Although there are some transgenic mouse strains that recreate some aspects of IBM, in this review, we hypothesize that the great degree of similarity between nematode and human genes known to be involved in IBM as well as the considerable conservation of biological mechanisms across species is an important feature that must be taken into consideration when deciding on the use of this nematode as a model. Straightforward laboratory techniques (culture, transformation, gene knockdown, genetic screenings, etc.) as well as anatomical, physiological, and behavioral characteristics add to the value of this model. In the present work, we review evidence that supports the use of Caenorhabditis elegans as a biological model for IBM.  相似文献   

16.
Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression.  相似文献   

17.
Genes related to the Drosophila melanogaster doublesex and Caenorhabditis elegans mab-3 genes are conserved in human. They are identified by a DNA-binding homology motif, the DM domain, and constitute a gene family (DMRTs). Unlike the invertebrate genes, whose role in the sex-determination process is essentially understood, the function of the different vertebrate DMRT genes is not as clear. Evidence has accumulated for the involvement of DMRT1 in male sex determination and differentiation. DMRT2 (known as terra in zebrafish) seems to be a critical factor for somitogenesis. To contribute to a better understanding of the function of this important gene family, we have analyzed DMRT1, DMRT2, and DMRT3 from the genome model organism Fugu rubripes and the medakafish, a complementary model organism for genetics and functional studies. We found conservation of synteny of human chromosome 9 in F. rubripes and an identical gene cluster organization of the DMRTs in both fish. Although expression analysis and gene linkage mapping in medaka exclude a function for any of the three genes in the primary step of male sex determination, comparison of F. rubripes and human sequences uncovered three putative regulatory regions that might have a role in more downstream events of sex determination and human XY sex reversal.  相似文献   

18.
As a sister group to Bilateria, Cnidaria is important for understanding early nervous system evolution. Here we examine neural development in the anthozoan cnidarian Nematostella vectensis in order to better understand whether similar developmental mechanisms are utilized to establish the strikingly different overall organization of bilaterian and cnidarian nervous systems. We generated a neuron-specific transgenic NvElav1 reporter line of N. vectensis and used it in combination with immunohistochemistry against neuropeptides, in situ hybridization and confocal microscopy to analyze nervous system formation in this cnidarian model organism in detail. We show that the development of neurons commences in the ectoderm during gastrulation and involves interkinetic nuclear migration. Transplantation experiments reveal that sensory and ganglion cells are autonomously generated by the ectoderm. In contrast to bilaterians, neurons are also generated throughout the endoderm during planula stages. Morpholino-mediated gene knockdown shows that the development of a subset of ectodermal neurons requires NvElav1, the ortholog to bilaterian neural elav1 genes. The orientation of ectodermal neurites changes during planula development from longitudinal (in early-born neurons) to transverse (in late-born neurons), whereas endodermal neurites can grow in both orientations at any stage. Our findings imply that elav1-dependent ectodermal neurogenesis evolved prior to the divergence of Cnidaria and Bilateria. Moreover, they suggest that, in contrast to bilaterians, almost the entire ectoderm and endoderm of the body column of Nematostella planulae have neurogenic potential and that the establishment of connectivity in its seemingly simple nervous system involves multiple neurite guidance systems.  相似文献   

19.
Moran Y  Gurevitz M 《The FEBS journal》2006,273(17):3886-3892
Rapid evolution driven by positive Darwinian selection appears in toxins of vipers, scorpions, and marine snails. Although the vast phylogenetic distances between these animals suggest that this phenomenon is common, the recent release of the genome of Nematostella vectensis (Starlet anemone) as a collection of contigs portrays another extreme. Besides potassium channel toxin domains, which resemble potassium channel blockers, embedded in various genes, only one gene family encoding for sodium channel neurotoxins has been found, and the putative mature product of 10 family members is identical. Whereas the existence of a single toxin encoded by multiple genes may be explained by the unique ecology of N. vectensis, the complete absence of substitutions including synonymous ones is surprising and suggests either that these genes have been duplicated recently, or that their total conservation was advantageous. A retro-element identified downstream to one of the genes offers a possible mechanism of enhanced toxin gene duplication. This assumption still awaits further verification as soon as the various contigs are assigned within larger genomic fragments.  相似文献   

20.
Partridge L 《Aging cell》2007,6(5):595-598
The invertebrate model organisms continue to be engines of discovery in aging research. Recent work with Drosophila stem cells has thrown light on their human equivalents, and on the role of stem cells and their niches in the decline in fecundity with age. Inspired by observations of aging in bacteria and yeast, a new theoretical study has revealed evolutionary forces that could favour asymmetry in the distribution of damaged cell constituents at division, and hence pave the way for the evolution of aging and selective maintenance of integrity of the germ line. Mechanisms of nutrient sensing and cell signalling in the response of lifespan to dietary restriction have been elucidated. Powerful invertebrate models of human aging-related disease have been produced, and used to start to understand how the aging process acts as a risk factor for disease. In the near future, studies of invertebrate aging are likely to move away from an exclusive reliance on genetic manipulation towards a more biochemical and physiological understanding of these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号