首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Stomatogenesis was studied in the heterotrich ciliate Blepharisma japonicum stained with protargol. During binary fission not only is a new oral apparatus made for the posterior daughter, but the already existing oral apparatus of the parent cell is reorganized, i.e., partially disassembled and then subsequently reassembled to provide a functional feeding apparatus for the anterior daughter cell. These morphogenetic events, requiring 2 1/2 to 3 hr, are complete by the time the anterior and posterior daughters separate. In preparation for division, an oral anlage is formed by the rapid proliferation of kinetosomes along 4-5 stomatogenic kinetics directly subtending the cytostome. This field of randomly oriented kinetosomes ultimately gives rise to the feeding apparatus of the posterior daughter cell. Early in division, the oral anlage separates into 2 longitudinal fields of kinetosomes: one is destined to give rise to the undulating membrane and the other forms the adoral zone of membranelles. Shorly after the anlage is established posterior to the cytostome, reorganization of the existing functional mouth is initiated. The morphologic changes associated with this dedifferentiation-redifferentiation sequence lead to the formation of an oral apparatus for the anterior daughter and cannot be distinguished from those characteristically seen during physiologic reorganization.  相似文献   

2.
SYNOPSIS Cortical events occurring in the course of regeneration in Condylostoma magnum (Spiegel) were studied by electron microscopy. The zone of regeneration is very rich in vacuoles and small vesicles formed from the plasma membrane. Multiplication of kinetosomes starts on the left side of kineties in the V-shaped left ventral area, normally implicated in stomatogenesis, at the level of the anterior kinetosomes of the somatic pairs. The proliferation proceeds by the appearance of young kinetosomes most often orthogonal to the old ones. This process of multiplication is very rapid and terminates in the formation of an “anarchic field” in which one observes that: (a) the newly formed kinetosomes do not possess all the associated postciliary fibers; and (b) when these fibers are detected, the kinetosomes are not in the same orientation. Differentiation of the adoral organelles takes place in the left part of the field (left primordium) by an alignment of the kinetosomes into 2 rows for each organelle (oriented perpendicularly to the antero-posterior axis of the ciliate), of which only one has the postciliary fibers. Ciliatogenesis occurs in numerous kinetosomes of the anarchic field; in certain kinetosomes it is achieved at the onset of their arrangement into organelles and is concomitant with growth of the nematodesmata. The 3rd (anterior) row of the organelles, the interkinetosomal desmata, and connections among neighboring organelles appear only secondarily. Differentiation of the paroral cilia occurs later. It takes place in the interior of the primordium, whose organization is primarily anarchic, and is accompanied by a progressive resorption of the major part of the newly formed kineties. Numerous kinetosomes of the right field have the associated postciliary fibers, which are not found at the level of the regenerated “polystichomonad” (paroral organization characteristic of C. magnum). Finally, the formation of new kinetosomes within a somatic kinety at the time of its elongation is described.  相似文献   

3.
Morphogenesis in Kyaroikeus cetarius, a large phyllopharyngean parasite of odontocete Cetacea, begins with the midventral proliferation of four short rows of kinetosomes immediately to the left of four pre-existing, somatic kinetofragments. The resulting field of eight short kineties is located within a shallow depression that gradually elongates and deepens to form the oral cavity of the opisthe. The four right-most of these kineties sink into the developing oral cavity and divide transversely, producing three distinct sets of kinetofragments. The anterior and posterior sets each consist of four small fragments and ultimately produce the mid-ventral, somatic kinetofragments of the proter and the opisthe, respectively. In addition, some kinetosomes from the anterior set give rise to the secretory organelle complex of the proter. The central group consists of two long and one short kinetofragment, which represent anlagen for the opisthe circumoral and preoral kineties, respectively. These anlagen migrate progressively anteriad while undergoing a pronounced counterclockwise rotation that eventually inverts the developing oral kineties. Simultaneously, two broad sheets of microtubules, one beneath each circumoral anlage, extend deep into the cytoplasm and unite to line the cytopharynx of the opisthe. Meanwhile, the remainder of the eight original kinetofragments move laterally out of the ventral depression to produce the left ciliary field of the opisthe. Morphogenetic events observed in K. cetarius are typical of cyrtophorid Phyllopharyngia and support inclusion of this genus within suborder Dysteriina.  相似文献   

4.
SYNOPSIS. Stomatogenesis was studied in the heterotrich ciliate Blepharisma japonicum stained with protargol. During binary fission not only is a new oral apparatus made for the posterior daughter, but the already existing oral apparatus of the parent cell is reorganized, i.e. partially disassembled and then subsequently reassembled to provide a functional feeding apparatus for the anterior daughter cell. These morphogenetic events, requiring 21/2 to 3 hr, are complete by the time the anterior and posterior daughters separate. In preparation for division, an oral anlage is formed by the rapid proliferation of kinetosomes along 4–5 stomatogenic kinetics directly subtending the cytostome. This field of randomly oriented kinetosomes ultimately gives rise to the feeding apparatus of the posterior daughter cell. Early in division, the oral anlage separates into 2 longitudinal fields of kinetosomes: one is destined to give rise to the undulating membrane and the other forms the adoral zone of membranelles. Shortly after the anlage is established posterior to the cytostome, reorganization of the existing functional mouth is initiated. The morphologic changes associated with this dedifferentiation-redifferentiation sequence lead to the formation of an oral apparatus for the anterior daughter and cannot be distinguished from those characteristically seen during physiologic reorganization.  相似文献   

5.
Recent works on prostomatid ciliates show that some genera of this group have a differentiated oral infraciliature and that their stomatogenesis during division involves the proliferation of only a few somatic kineties. These findings have significant implications regarding the iaxonomic status of these genera and also on the terminology used for the oral structures. In Urotricha ondina , the oral infraciliature consists of (1) a paroral kinety formed of paired kinetosomes that encircle the cytostome at the anterior pole of the cell and (2) 3 adoral organelles, each formed of 2 rows of kinetosomes, ventral in position and obliquely disposed, lying above 3 short somatic kineties that do not reach the anterior pole of the cell. This oral ciliature —formerly known as the corona and brosse, respectively—originate during stomatogenesis from the proliferation of 4 somatic kineties that lie posterior to the adoral organelles of the parental cell.  相似文献   

6.
宋微波 《动物学报》1997,43(1):90-95
钩刺斜管虫口和体纤毛器演化模式是研究该类动物个体发生的优秀模型。通过跟踪研究,澄清了后仔虫口器发生以及体纤毛器起源上的几点疑问,并证实:体左侧二列片段动基列为同源再造而非来自老结构的分裂或复制;三列围口纤毛均为双动基列构造;后仔虫口原基场的构建系由5列体动基列共同参与完成的,其中最左侧两列短的原基片段与原基1整合为一体,从而发展成营养期虫体的外围口动基列;后仔虫背触毛原基为独立发生。  相似文献   

7.
K Eisler 《Bio Systems》1992,26(4):239-254
The ciliate species which lack a distinctive oral ciliature are considered to represent an ancestral state in ciliate evolution. Consequently, the somatic kineties composed of kinetids (kinetosomes plus cilia and associated fibrillar systems) are thought to be the ancestral ciliature. Results on stomatogenesis in 'gymnostomial ciliates' have shown that these ciliates probably have evolved from ancestors already equipped with an oral ciliature. Thus instead of the somatic, the oral ciliature may be regarded an ancestral. Based on these ideas a hypothesis on the evolution of the ciliate kinetome (assembly of all kinetids covering the body of a given ciliate) is presented. The first step in the evolution of the kinetome was the formation of a paroral membrane, a compound ciliary organelle lying along the right side of the oral area which historically but falsely is termed membrane. It was composed of kinetosomal dyads (dikinetids), derived from the kinetid of a dinoflagellate-like ancestor. From the beginning the paroral membrane was responsible for locomotion, ingestion and for the formation of a cytopharyngeal tube which the first ciliate probably had inherited from its flagellate ancestor. In the second step a first somatic kinety was formed from the right row of kinetosomes of the paroral membrane as a result of a longitudinal splitting of the paroral membrane and a subsequent migration of the forming kinety to the right into the somatic cortex. To increase the number of somatic kineties this process was repeated until the kinety produced first reached the left border of the oral area. By this step the locomotive and the nutritional functions were differentiated between somatic and oral structures. In a third step the adoral organelles were formed from somatic kinetids left of the oral area. The primitive type of stomatogenesis was a buccokinetal one derived from the mode the flagellate ancestor used to distribute its replicated kinetosomes to the offspring cells (buccokinetal means that at least parts of the oral anlage for the posterior offspring cell has its origin in the parental oral apparatus). This hypothesis, based on comparative studies on ciliate morphogenesis, is corroborated by molecular data from other laboratories.  相似文献   

8.
SYNOPSIS. Elaboration of ciliated feeding organelles in the protozoon Stentor coeruleus was reinvestigated for the first time by scanning electron microscopy which gives the most realistic 3-dimensional images. Parallel transmission EM studies of synchronized regenerating stentors gave further ultrastructural details of stomatogenesis, while also confirming the expectation that in the structure of its kineties this now classical experimental object does not differ from other species of Stentor previously studied. Within 2 hr after the stimulus to regeneration, several generations of new kinetosomes for the oral primordium are produced, first in association with kinetosomes of kineties at the restricted primordium site. These kinetosomes rapidly sprout membranellar cilia as well as subpellicular microtubules but are still randomly oriented (anarchic field). The forming membranellar band increases from its center-line to both sides while it grows in length. Young cilia are blunt-ended. Recession of the early anlage occurs without rupture of the pellicle; soon apparent is the clear border stripe of unknown function along the right side of the membranellar band. Instantaneous fixation of beating cilia in early primordia revealed random beating, with coordination and presumably membranellar organization not yet attained. In late anlagen there are 2 types of metachronal rhythm: transversely from cilium to cilium across any given membranelle, as well as the easily observable serial beating of membranelles along the entire band. A single file of cilia leads the subsequent cytostomal invagination. The posterior end of the membranellar band then follows to line the cytopharynx.  相似文献   

9.
The somatic and buccal infraciliature of Lagynus elegans are described, and aspects of its division and conjugation are reported. Its somatic infraciliature is made up of 37–46 meridianal kineties composed of isolated kinetosomes that have thick and long kinetodesmal fibers. In the anterior zone of the cell, the circumoral infraciliature can be observed: it is composed of short, slightly oblique kinetal segments, which are formed of three kinetosomes each. The brosse of this species consists of 3 or 4 groups that possess 4 to 6 ciliated kinetosomes each; these kinetosomes lack kinetodesmal fibers. On the apical pole of the cell, surrounding the oral opening, a crown of nematodesmata is observed; these nematodesmata are connected to each other by a fibrillar structure. Taking into account these features, we propose that this genus be transferred from the order Prostomatida to a new family, Lagynidae, of the order Prorodontida.  相似文献   

10.
The principal characteristics of stomatogenesis during division in Climacostomum virens are: (A) Kinetosomal proliferation on the left side of a variable number of kineties in the ventral somatic cortex forms an oral primordium consisting of several kinetosomal fields, which then fuse to form a single anarchic field. (B) A constant topographical relationship exists between the primordium and a well defined cortical pattern, the zone of discontinuity. (C) The anarchic field primordium divides into 2 unequal parts—to the left, the AZM primordium, and to the right, the paroral primordium, which differentiates into the apical membranelles, the peristomial field, and the buccal tube. (D) Preoral and oblique kineties of the somatic cortex form along the right side of the paroral primordium. (E) Parental oral structures are partially dedifferentiated. Stomatogenesis in C. virens and other heterotrichs is compared.  相似文献   

11.
Stomatogenesis during metamorphosis of the marine loricate ciliate, Eufolliculina uhligi, was observed by transmission electron microscopy. Kinetosome proliferation in the stomatogenic territory leads to the formation of an anarchic field. This separates into the left adoral and the right paroral primordia. Both primordia consist of pairs of kinetosomes. One kinetosome of a pair is associated with one transverse and two postciliary microtubules; the other has one transverse microtubule. The postciliary microtubules of the adoral kinetosomes become divergent; those of the paroral kinetosomes become convergent. The adoral kinetosomes arrange in promembranelles. Then a third row of kinetosomes is produced anteriorly to each promembranelle. This third row is short at the peristome but longer in the buccal area. The paroral kinetosomes form a stichodyad. The buccal part of the paroral primordium is resorbed during formation of the buccal cavity. Stomatogenesis ends with the development of a functioning cytostome. During this process, the postciliary microtubules of the buccal adoral membranelles elongate and become associated with cytopharyngeal vesicles. Fusion of these vesicles with the cytostome has been observed some time after the completion of the oral structures.  相似文献   

12.
SYNOPSIS. The fine structure of the tomite stage of Hyalophysa chattoni was examined with particular attention to its kinetal apparatus. The pellicle, thick and dense compared with that of other ciliates, is formed of three layers. The inner layer is composed of short fibrils oriented perpendicular to the surface. The cytoplasm around the oral passage and beneath falciform field 8 is crowded with dense inclusion bodies of unknown function. Dorsal to the oral passage is the rosette, a disc-shaped organelle subdivided by septa in the form of incomplete radii about a central chamber containing a tuft of cilia. The septa are composed of 3 membranes enclosing a fine layer of cytoplasm. At their inner ends 20 mμ fibers run dorsally and ventrally. Dense clumps of fibrous material line the luminal surface of the septa. Rows of fusiform trichocysts parallel the kineties. The trichocysts are composed of a finely periodic, moderately electron-dense material surrounded by 20 mμ fibrils oriented along the long axis of the trichocyst. Between and below the kinetosomes and the rows of trichocysts are electron-dense vesicles 300 mμ in diameter and bounded by a loose membrane. The large “trichocysts,” the “gros trichocystes” of Chatton and Lwoff, whose appearance heralds the beginnings of trichocystogenesis, prove to be canaliculi opening to the surface. Four separate ciliary membrane systems—the oral ciliature (XYZ), falciform field 8, falciform field 9, and the ogival field—are located on the ventral surface of the tomite. Each differs from the others and from the somatic kineties in the fibrillar organization around its kinetosomes. In the somatic kineties the kinetodesmos is a dense, periodic fiber which is formed of stacks of up to 18 subfibers, each arising from the base of a kinetosome. The kinetosomes are short (300 mμ) and contain dense central granules. In some kineties, alternating between the kinetosomes, are elliptical kinetosome-like structures which do not bear cilia and perhaps provide a reservoir of kinetosomes for future growth of the kinety.  相似文献   

13.
RESUME. Chacun des 45–80 organelles adoraux de Bursaria truncatella O. F. Müller est constitué de 3 rangées de cinétosomes et l'aire buccale droite est couverte de nombreuses doubles rangées de cinétosomes. La stomatogenèse débute par la désorganisation et la résorption des organelles buccaux postérieurs. Puis, il y a désorganisation des rangées parorales de cinétosomes et multiplication des cinétosomes sur l'aire orale droite, en měme temps que sont rompues, selon une ligne oblique, un certain nombre de cinéties somatiques. La prolifération des cinétosomes aux extrémités des cinéties. de part et d'autre de la ligne de rupture, aboutit, d'une part, à la formation d'un champ anarchique qui est le primordium oral droit de l'opisthe, d'autre part, à la formation de nombreux doublets qui constituent chacun le primordium de chaque organelle adoral. Après la séparation des tomites, les cinétosomes de l'aire droite s'ordonnent en doubles rangées et les organelles adoraux se complètent par addition d'une 3ème rangée de cinétosomes. Les cinétosomes somatiques sont jumelés, reliés par 2 desmoses. Les fibres transverses postérieures et les fibres postciliaires forment de longs rubans de microtubules dirigés vers l'arrière et juxtaposés dans les crětes intercinétiennes. Les doubles rangées droites de cinétosomes buccaux sont assimilables à des stichodyades. Les organelles des cinétosomes adoraux portent des rideaux de fibres postciliaires convergents ou divergents. La rangée postérieure de chaque organelle est non ciliée. Par son type de stomatogenèse, par sa structure corticale, par l'ultrastructure des organelles adoraux, Bursaria appartient aux Colpodidea, ce qui suggère des remarques de plusieurs types. SYNOPSIS. In Bursaria truncatella O. F. Müller, each of the 45–80 adoral organelles is composed of 3 rows of kinetosomes, and the right buccal area is covered by many double rows of kinetosomes. Stomatogenesis begins by disorganization and disappearance of the posterior buccal organelles. Next, there is disorganization of the paroral rows of kinetosomes and multiplication of kinetosomes in the right oral area; at the same time, some somatic kineties are disrupted along an oblique line. Multiplication of kinetosomes at the extremities of the kineties, on both sides of the disruption, leads to the formation of an anarchic field which is the right oral primordium of the opisthe and the formation of doublets each of which constitutes an adoral organelle. After the separation of the tomites. the kinetosomes in the right buccal area position themselves, and the adoral organelles are completed by the addition of a 3rd row of kinetosomes. Somatic kineties are formed by successive pairs of ciliated kinetosomes united by 2 desmoses. the long posterior transverse ribbons and the postciliary ribbons extend posteriad, overlapping in the pellicular ridges. Oral rows of kinetosomes on the right can be compared with stichodyads. the adoral kinetosomes have convergent or divergent postciliary ribbons. the posterior row of kinetosomes in each organelle is not ciliated. By the type of stomatogenesis, the cortical ultrastructure, the ultrastructure adoral of its organelles, Bursaria belongs to the Colpodidea.  相似文献   

14.
Nuclear and cortical phenomena during dividing and resting cyst formation of Colpoda inflata are described. Cell division forms a cyst and produces two or four tomites. In each tomite, the right oral field results from the proliferation of the anterior extreme of a single kinety, and the left oral field results from the proliferation of four, five, or six somatic kineties. After macronuclear division, each macronuclear mass undergoes a chromatinic extrusion process. During resting cyst formation, the oral infraciliature of the vegetative cell is resorbed. The somatic kineties dispose in a radial way and some pairs of kinetosomes disappear. As in cell division, there is an extrusion process. From these results we conclude that the resting cysts of Colpoda inflata cannot be included in any group of the previous classifications for hypotrich resting cysts. Thus, we propose a new additional group to Walker and Maugel's classification called PKR (partial-kinetosome-resorbing) cysts.  相似文献   

15.
SYNOPSIS. The fine structure of the cilium, kinetosome, kinetodesmal fiber, and basal microtubules has been described in Cyathodinium piriforme. The ciliary axoneme is encased in an electron-dense jacket termed the axonemal jacket. This jacket surrounds the axoneme and is found midway between the axoneme and the ciliary membrane when viewed in cross section. Before division or reorganization the cilia are withdrawn into the cell. Intact cilia surrounded by their jackets are found in the cytoplasm during the early phases of retraction. Degradation of the axonemal microtubules precedes the dissolution of the axonemal jacket. Profiles of the jackets are observed after the microtubules have been resorbed. The cilia appear to detach from the kinetosomes. Barren kinetosomes are seen below the cell surface frequently with kinetodesmal fibers still attached. Whether all or some of these barren kinetosomes contribute to the formation of the new ciliary anlage cannot be ascertained.  相似文献   

16.
ABSTRACT Trimyema compressum is a species included in the family Trimyemidae with the single genus Trimyema. This species has 50–60 somatic kinetics and three rows of kinetosomes surrounding the oral cavity. Two isolated groups of kinetosomes can also be observed on the right side of the oral region. The morphogenesis of bipartition is telokinetal; all the new infraciliary structures of the opisthe come from the longitudinal and postero-anterior proliferation of the last kinetosome of all the somatic kinetics. In the proter there is a reorganization of the oral infraciliature. As a result of our observations, we suggest that the systematic position of the genus Trimyema be changed from the subclass Vestibulifera to the subclass Gymnostomata. We also consider that this genus must be included in the suborder Trimyemina Jankowski, 1980.  相似文献   

17.
The planktonic ciliate Strombidinopsis jeokjo n. sp. is described from Quantitative Protargol-Stained (QPS) preparations, and the sequence of the small subunit rDNA (SSU rDNA) from cultured cells is reported. This species is ovoid and bluntly tapered towards the posterior. The ranges (and mean +/- standard deviation, n = 31) of cell length, cell width, and oral diameter of the QPS-stained specimens were 100-190 microm (149 +/- 25), 60-105 microm (79 +/- 13), and 55-80 microm (64 +/- 5), respectively. Fifteen to seventeen external oral polykinetids had oral membranelle cilia 20-35 microm long. Twenty-six to twenty-eight somatic kineties were equally spaced around the cell body and extended from the oral to the posterior regions with 23-44 dikinetids per kinety. Both kinetosomes of each kinetid bore cilia 3-7 microm long. Strombidinopsis jeokjo had two ovoid macronuclei of 25-38 microm x 12-15 microm. When properly aligned, the sequence of the SSU rDNA of S. jeokjo (GenBank Accession No. AJ628250) was approximately 2% different from that of an unidentified Strombidinopsis species (GenBank Accession No. AF399132-AF399135), the closest species in the SSU rDNA sequence.  相似文献   

18.
Living and stained specimens of Phacodinium metchnikoffi, collected near Madrid, Spain, were studied under light microscopy. Infraciliature was stained using a silver-impregnation procedure. The somatic infraciliature is composed of a relatively small number of discontinuous kinetics, formed by groups of few kinetosomes (pallets). The buccal ciliature is composed of an adoral zone of membranelles and a paroral formation otherwise unknown in ciliates, with many short kineties, which lie on a rigid stem. We propose that P. metchnikoffi is a primitive hypotrich and, consequently, we present a new classification system for hypotrichs.  相似文献   

19.
In Pleurotricha lanceolata, the ventral somatic infraciliature presents 13 frontoventral cirri, 5 transverse cirri, one row with 18–19 left marginal cirri and two rows of right marginal cirri of different length. On the dorsal side there are six longitudinal rows of dorsal bristles, four of them bipolar and the other two less than half body length. The oral infraciliature includes the adoral zone of membranelles, with 45–55 membranelles of three or four rows of kinetosomes each, and two undulating membranes (paroral and endoral membranes), each with two rows of kinetosomes. Some structures of the oral and somatic fibrillar systems have also been examined and are similar to those described in other species of hypotrichous ciliates.  相似文献   

20.
ABSTRACT. Morphological and ultrastructural studies on a new ciliate, Paraptychostomum almae , from the digestive tract of an oligochaete ( Alma emini ) from the Cameroons are carried out. The flattened cell has a large size; its left lateral face bears an anterior thigmotactic zone that includes seven-nine short kinetal segments. The somatic cortex is composed of flattened alveoli, a thin epiplasm and a microfibrillar ecto-endoplasmic boundary. Kineties are made of monokinetids, each particularly characterized by a long anteriorly directed kinetodesmal fiber, and a hyperdivergent postciliary ribbon. The postero-ventral buccal apparatus consists of a short peristome and a deep longitudinal infundibulum. The paroral organelle is a long stichodyad. The three adoral organelles are of different types: ADI and AD3 are of the membranoid type, respectively with two and one rows of ciliated kinetosomes; AD2 is of the peniculus type with six-seven rows of ciliated kinetosomes. A microfibrillar network with nodes arises from all the buccal kinetosomes and extends under the naked wall. Mitochondria are small and numerous and dispersed throughout the whole cell. The existence of an AD2 with more than two rows of kinetosomes warrants the creation of the new genus Paraptychostomum and a new family, Ptychostomatidae. The presence of a distinct ecto-endoplasmic boundary and of somatic kinetids exclusive without transversal dense tractus, hyperdivergent postciliary ribbons, and dispersed numerous mitochondria, added to particularities of the stomatogenesis, allow us to clearly separate hysterocinetians from the scuticociliates and to set up for them the new subclass Hysterocinetia, within the class Oligohymenophorea, with a single new order Hysterocinetida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号