首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HCV infection typically induces liver injury and inflammation, which appears to be responsible for the associated fibrogenesis. To date, the mechanism underlying the different rates of disease progression remains unclear. The aim of the study is to understand the possible role of the HCV non-structural (NS) 3/4A protein in the fibrosis progression. We used NS3/4A-expressing transgenic mice (NS3/4A-Tg) to accomplish the goals of the study. Different stages of liver fibrosis were induced in wild-type and NS3/4A-Tg mice by single carbon tetrachloride (acute) or multiple injections for 4 (intermediate) or 8 (chronic) weeks. Fibrotic parameters, inflammatory responses and hepatocyte turnover were extensively examined. Hepatic expression of HCV NS3/4A did not induce spontaneous liver damage. However, NS3/4A expression exerted contrasting effects during acute and chronic liver damage. During early fibrogenesis and intermediate fibrosis (4 weeks), NS3/4A-Tg mice exhibited enhanced liver damage whereas reduced fibrosis was observed in NS3/4A-Tg during chronic liver fibrosis (8 weeks). Furthermore, attenuated inflammation was observed in NS3/4A-Tg during chronic fibrosis with increase in M2 macrophages, hepatocyte proliferation, decreased hepatocyte apoptosis and decreased ductular reaction. In conclusion, during early fibrogenesis, HCV NS3/4A contributes to liver damage. While, during chronic liver fibrosis, NS3/4A dampens inflammation and induces hepatocyte regeneration thereby contributing to slow fibrosis progression to promote its survival or persistence.  相似文献   

2.
It is important to study the mechanism of liver fibrogenesis, and find new non‐invasive biomarkers. In this study, we used subcellular proteomic technology to study the plasma membrane (PM) proteins related to immune liver fibrosis and search for new non‐invasive biomarkers. A rat liver fibrosis model was induced by pig serum injection. The liver fibrogenesis from stage (S) S0‐1, S2, S3‐4, and S4 was detected by Masson staining and HE staining in this rat model after 2, 4, 6, and 8 weeks of treatment. The liver PM was enriched and analyzed using subcellular proteomic technology. The differentially expressed proteins were verified by Western blotting, immunohistochemistry, and ELISA. PM with 149‐fold purification was obtained and 22 differentially expressed proteins were identified. Of which, annexin A2 (ANXA2) was detected to be increased obviously in S4 compared with S0‐1, and verified by Western blotting of rat liver tissue and immunohistochemistry of rat and human liver tissue. The expression of ANXA2 in human plasma with S1‐2 was also found to be up‐regulated for 1.4‐fold than that in S0. Furthermore, ANXA2 was detected to translocate from nuclear membrane and cytosol to PM as HBV stimulation through immunocytochemical analysis in vitro. This study identified 22 differentially expressed proteins related to liver fibrosis, and verified a potential biomarker (ANXA2) for non‐invasive diagnosis of immune liver fibrosis. To our knowledge, it was the first time to dynamically study the proteins related to liver fibrosis and select biomarkers for liver fibrosis diagnosis through PM proteome research. J. Cell. Biochem. 110: 219–228, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor γ activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient l-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGFβ1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.  相似文献   

4.
The role of osteoactivin (OA) in liver fibrogenesis remains unclear. After feeding wild-type (WT) and OA transgenic (OA-Tg) rats a choline-deficient, L-amino acid-defined (CDAA) diet for 12 weeks, we evaluated liver fibrosis. Hepatic fibrosis and expression of alpha-smooth muscle actin protein in OA-Tg rats were reduced in comparison to WT rats. Our examination of the expression of 31,100 genes by microarray analysis identified 177 and 256 genes that were upregulated and downregulated, respectively, by at least twofold in OA-Tg rat livers in comparison to WT rat livers. Of these genes, we confirmed a significant downregulation in the expression levels of tissue inhibitor of metalloproteinase-1 and -2, type I collagen, and platelet-derived growth factor receptor-alpha and -beta in the livers of OA-Tg rats. These results indicate that transgenic OA expression attenuates the development of hepatic fibrosis in association with the suppression of specific genes involved in its pathogenesis.  相似文献   

5.
为了解组织金属蛋白酶抑制因子1(TIMP-1)基因在实验性肝纤维化形成中的作用,我们应用地高辛原位杂交技术对大鼠肝组织在四氯化碳(CCl4)诱发肝纤维化形成过程中TIMP-1mR-NA的表达进行了研究。结果表明,CCl4肝损伤早期(4周)肝组织中间质细胞(血管及窦内皮细胞及贮脂细胞)中显示TIMP-1的过度表达;CCl4肝纤维化早期(8周)及肝纤维化晚期(12周),肝组织中间质细胞的TIMP-1表达持续维持在高水平。结果提示,肝间质细胞(内皮细胞及贮脂细胞)是肝内TIMP-1的主要来源细胞;TIMP-1的异常表达是大鼠肝纤维化过程中较早出现的分子变化,与肝纤维化发生有关;纤维化晚期持续高表达的TIMP-1通过抑制胶原酶而在肝纤维化持续进展中起重要作用。  相似文献   

6.
Activin A, a member of the transforming growth factor-beta superfamily, is constitutively expressed in hepatocytes and regulates liver mass through tonic inhibition of hepatocyte DNA synthesis. Follistatin is the main biological inhibitor of activin bioactivity. These molecules may be involved in hepatic fibrogenesis, although defined roles remain unclear. We studied activin and follistatin gene and protein expression in cultured rat hepatic stellate cells (HSCs) and in rats given CCl4 for 8 wk and examined the effect of follistatin administration on the development of hepatic fibrosis. In activated HSCs, activin mRNA was upregulated with high expression levels, whereas follistatin mRNA expression was unchanged from baseline. Activin A expression in normal lobular hepatocytes redistributed to periseptal hepatocytes and smooth muscle actin-positive HSCs in the fibrotic liver. A 32% reduction in fibrosis, maximal at week 4, occurred in CCl4-exposed rats treated with follistatin. Hepatocyte apoptosis decreased by 87% and was maximal at week 4 during follistatin treatment. In conclusion, activin is produced by activated HSCs in vitro and in vivo. Absence of simultaneous upregulation of follistatin gene expression in HSCs suggests that HSC-derived activin is biologically active and unopposed by follistatin. Our in vivo and in vitro results demonstrate that activin-mediated events contribute to hepatic fibrogenesis and that follistatin attenuates early events in fibrogenesis by constraining HSC proliferation and inhibiting hepatocyte apoptosis.  相似文献   

7.
We investigated the changes in the hepatic proteome in murine models for toxic-induced fibrogenesis and sclerosing cholangitis. A comprehensive comparison of protein changes observed is made and the mechanistical basis of the expression changes is discussed. Hepatic fibrosis was induced by repetitive intraperitoneal CCl4 treatment of BALB/c mice or developed spontaneously in BALB/c-ATP-binding cassette, subfamily B, member 4 (Abcb4) knock out mice. Fibrosis was verified by a morphometric score and assessment of hydroxyproline content of liver tissue, respectively. The innovative difference in-gel electrophoresis (DIGE) technique was used to analyse protein expression levels of the mouse proteome. Results were confirmed by Western blotting and real-time RT-PCR. In CCl4-induced fibrosis 20 out of 40 and in BALB/c-Abcb4(-/-) mice 8 out of 28 differentially expressed proteins were identified utilizing DIGE. Only two proteins, selenium-binding protein (Sbp2) and carbonic anhydrase 3, have been unidirectionally expressed (i.e. down-regulated) in both models. Relevant differences in the pathogenesis of toxically induced liver fibrosis and sclerosing cholangitis exist. The only novel protein with regard to liver fibrosis depicting a unidirectional expression pattern in both animal models was Sbp2. An explicit protein function could not be clarified yet.  相似文献   

8.
9.
C C Shih  Y W Wu  W C Lin 《Phytomedicine》2005,12(6-7):453-460
The aim of this study was to investigate the effects of aqueous extract of Anoectochilus formosanus (AFE) on liver fibrogenesis in carbon tetrachloride (CCl4)-induced cirrhosis. Fibrosis was induced in rats by oral administration of CCl4 (20%, 0.5 ml/rat, p.o.) twice a week for 8 weeks. AFE (0.5 and 2.0 g/kg, p.o., daily for 8 weeks) was administered to rats simultaneously. AFE showed reducing actions on the elevated levels of GOT and GPT caused by CCl4. Liver fibrosis in rats induced by CCl4 led to the drop of serum albumin concentration; the AFE increased the albumin concentration. The CCl4-induced liver fibrosis markedly caused liver atrophy and splenomegalia, while AFE increased the liver weight, and decreased the spleen weight. The CCl4-induced liver fibrosis decreased the protein content, and increased collagen contents in rat's liver. AFE significantly increased the contents of protein and reduced the amount of collagen in the liver. In CCl4-treated rats, glutathione concentrations of liver were not affected. AFE significantly increased liver glutathione concentrations. All these results clearly demonstrate that AFE can reduce the liver fibrogensis in rats induced by CCl4.  相似文献   

10.
In order to explore the effects of fat-specific protein 27 (Fsp27) on regulation of hepatic stellate cell (HSC) activation and liver fibrosis. HSCs were isolated from rat liver tissues and cultivated in vitro for gene expression and lentivirus infection. CCK-8 cell viability assay, immunofluorescence staining, qRT-PCR, and western blot assays were used to assess phenotypic changes and gene expression in HSCs. The rat liver fibrosis model was produced by intraperitoneal injection of carbon tetrachloride for assessing the effects of Fsp27 in the rat liver. Gene expression was then detected by immunohistochemistry and ELISA assays. The results of the study showed that Fsp27 was constitutively expressed in primary quiescent HSCs, but was absent in activated HSCs. Ectopic expression of Fsp27 significantly inhibited HSC proliferation and activation, as well as expression of α-smooth muscle actin. Fsp27 expression also significantly reduced collagen I production and matrix metalloproteinases 2 protein levels, and to a lesser degree, reduced tissue inhibitors of metalloproteinases 1 expression. In vivo data showed that ectopic expression of Fsp27 protein significantly reduced levels of hydroxyproline in liver tissue, and decreased serum levels of collagen III and hyaluronic acid, which in turn, suppressed liver fibrosis in rats. From these findings, it can be concluded that Fsp27 expression suppressed HSC activation in vitro and liver fibrogenesis in vivo. Further studies are needed to explore whether expression of Fsp27 can be selected as a potential novel strategy for anti-fibrotic therapy against liver fibrosis.  相似文献   

11.
The activation of the hepatic stellate cell (HSC) is a key step in liver fibrogenesis. Utilizing large scale sequencing of a 3'-directed cDNA library, we investigated expression profiles of quiescent and activated rat HSCs. During the activation process, O-acetyl disialoganglioside synthase (OAcGD3S) was identified as one of the significant upregulated factors. Upregulation of OAcGD3S in cultured HSCs was confirmed by both Northern and Western blot analyses. OAcGD3S expression in models of experimental liver fibrosis was investigated at the mRNA level using RT-PCR. The expression of OAcGD3S protein in activated rat HSCs and in experimental fibrotic livers was demonstrated by immunohistochemistry. In situ hybridization revealed OAcGD3S mRNA expression in areas of ductular proliferation. Furthermore, O-acetyl GD3 protein was detected in activated rat HSCs and human cirrhosis livers. This study shows that OAcGD3S is strongly expressed during liver fibrogenesis and HSCs seem to be the major cellular sources of OAcGD3S in the liver.  相似文献   

12.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

13.
Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl(4)) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2 × 10(6)) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl(4) treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl(4) administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl(4) demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl(4) treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl(4) alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl(4) treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis.  相似文献   

14.
Hepatic fibrosis results from an imbalance between fibrogenesis and fibrolysis in the liver. It remains uninvestigated whether Kupffer cells produce matrix metalloproteinase-13 (MMP-13), which mainly hydrolyzes extracellular matrix (ECM). We sought to determine the role of Kupffer cells in fibrogenesis/fibrolysis. In vivo, we used the rat model of pig serum-induced liver fibrosis. A subset was treated with gadolinium chloride (GdCl(3)), which specifically acts on Kupffer cells. Administration of GdCl(3) remarkably decreased the hydroxyproline content of the liver and increased the expression of MMP-13 mRNA in the liver without a difference in procollagen type I and tissue inhibitors of metalloproteinase-1 (TIMP-1) mRNA expression on Northern blot analysis with the elimination of ED2-positive cells. In vitro, addition of GdCl(3) to isolated Kupffer cells showed increased type I collagen-degrading activity in a dose-dependent manner as well as MMP-13 mRNA expression on Northern blot analysis. It is concluded that Kupffer cells are a major source of MMP-13 and modulation of Kupffer cells by GdCl(3) prevents liver fibrosis with increased expression of MMP-13 mRNA and protein, whereas procollagen type I and TIMP-1 mRNA, which encode two major effectors of fibrogenesis, were unchanged. This is the first report showing that Kupffer cells produce interstitial collagenase (MMP-13) resulting in the reduction of ECM. This discovery may provide new insights into therapy for hepatic fibrosis.  相似文献   

15.
The role of retinoic acid (RA) in liver fibrogenesis was previously studied in cultured hepatic stellate cells (HSCs). RA suppresses the expression of alpha2(I) collagen by means of the activities of specific nuclear receptors RARalpha, RXRbeta and their coregulators. In this study, the effects of RA in fibrogenesis were examined in carbon tetrachloride (CCl4) induced liver fibrosis in mice. Mice were treated with CCl4 or RA and CCl4, along side control groups, for 12weeks. RA reduced the amount of histologically detectable fibrosis produced by CCl4. This was accompanied by a attenuation of the CCl4 induced increase in alpha2(I) collagen mRNA and a lower (2-fold versus 3-fold) increase in liver hydroxyproline. Furthermore, RA reduced the levels of 3-nitrotyrosine (3-NT) protein adducts and thiobarbituric acid (TBA) reactive substance (TBARS) in the liver, which are formed as results of oxidative stress induced by CCl4 treatment. These in vivo findings support our previous in vitro studies in cultured HSC of the inhibitory effect of RA on type I collagen expression. The data also provide evidence that RA reduces CCl4 induced oxidative stress in liver, suggesting that the anti-fibrotic role of RA is not limited to the inhibition of type I collagen expression.  相似文献   

16.
17.
Liver fibrosis is overly exuberant wound healing that leads to portal hypertension or liver cirrhosis. Recent studies have demonstrated the functions of bone morphogenetic protein 9 (BMP9) in liver fibrosis, and thus, targeting liver-specific BMP9 abnormalities will become an attractive approach for developing therapeutics to treat liver fibrosis. Here, we reveal that BMP9 serves as a valuable serum diagnostic indicator and efficient therapeutic target to attenuate liver fibrogenesis. Our analysis of biopsies from liver fibrotic patients revealed that higher BMP9 levels accompanied advanced stages of liver fibrosis. In mouse models, recombinant Bmp9 overexpression accelerated liver fibrosis, and adenovirus-mediated Bmp9 knockdown attenuated liver fibrogenesis. Intriguingly, BMP9 directly stimulated hepatic stellate cell activation via the SMAD signaling pathway to enhance hepatic fibrosis. Moreover, an inhibitory monoclonal antibody targeting Bmp9 was efficacious in treatment of mice with liver fibrosis. These observations delineate a novel model in which BMP9 directly drives SMAD/ID1 signaling in hepatic stellate cells, which modulates liver fibrogenesis development. Moreover, the findings unveil a promising surrogate biomarker for the diagnosis of hepatic fibrosis, thereby representing an efficient “BMP9 neutralization” approach in alleviating hepatic fibrosis.  相似文献   

18.
目的动态观察大鼠肝纤维化过程中Toll样受体4(Toll-like receptor4,TLR4)蛋白在肝脏的表达,探讨TLR4与肝纤维化发生发展的关系。方法以四氯化碳皮下注射复制大鼠肝纤维化模型,设立正常对照组和模型1周组、2周组、4周组、6周组。常规HE染色和天狼猩红胶原染色观察肝脏病变;检测肝组织羟脯氨酸和血浆内毒素含量;免疫组化和Western blot检测TLR4在肝组织中的表达,检测α-SMA观察活化的肝星状细胞(HSCs)。结果与正常对照组比较,CCl4作用2周时,肝组织羟脯氨酸含量开始明显增多(P〈0.01);模型组各组血浆内毒素含量呈梯度上升(P〈0.01),且与肝组织羟脯氨酸含量呈显著正相关关系(P〈0.01);CCl4作用1周后肝组织TLR4的表达即明显增强(P〈0.01),4周时和6周时有所下降(与2周组相比,P〈0.05),但仍高于正常对照组(P〈0.01)。TLR4阳性细胞包括枯否细胞、活化的HSCs及少量的肝细胞和内皮细胞。结论内毒素及其受体TLR4的改变可能在肝纤维化中起重要作用。  相似文献   

19.
目的:研究Notch通路在肝纤维发生发展中作用及可能的分子机制。方法:Wistar大鼠40只随机分为正常对照组与病理模型组,病理模型组皮下注射四氯化碳制备肝纤维化模型。8周后将大鼠处死,取肝组织行病理HE染色评价肝纤维化程度并采用免疫组织化学法检测Notch-1蛋白、E-cadherin蛋白与TGF-β1蛋白的表达。结果:肝组织病理HE染色示肝纤维化大鼠肝脏肝细胞坏死、再生明显,胶原纤维沉积明显增加,肝实质结构紊乱。与正常对照组相比,病理模型组notch-1与TGF-β1蛋白表达明显增加,而E-cadherin蛋白的表达明显下降(P<0.01)。结论:Notch通路在大鼠肝纤维化发生发展中可能起重要作用。  相似文献   

20.
In mammals, disulfide isomerase associated 3, PDIA3, is a member of the endoplasmic reticulum (ER) stress proteins, which can be induced by oxidative stress; however, its role in relation to stress regulation is still unknown in fish. Here, we report the cloning of a coding region of PDIA3 from the Atlantic salmon. PDIA3 mRNA expression was evaluated in the liver of Atlantic salmon exposed to environmental hyperoxia stress and toxic perfluorooctane sulfonate (PFOS) exposure stress. The PDIA3 sequence contained two PDI-typical thioredoxin active sites of WCGHC and shared approximately 70% identity with mammalian PDIA3, and its mRNA was primarily expressed in the liver. PDIA3 was significantly increased in the liver of Atlantic salmon exposed to hyperoxic water during smoltification. Also Mn superoxide dismutase (Mn-SOD) and CCAAT/enhancer binding protein (C/EBP), other markers of oxidative stress, were upregulated by hyperoxia. Furthermore, PFOS exposure of hepatocytes resulted in elevated mRNA expression of PDIA3, Mn-SOD and C/EBPδ as well as peroxisome proliferator-activated receptor gamma (PPARγ). These results indicate a signaling connection between oxidative stress and ER stress. PDIA3 and C/EBPδ may be valuable markers in fish for exposure and effect to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号