首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
8 uridine-requiring pyr mutants were isolated from Aspergillus nidulans under nitrosoguanidine treatment. All the mutants are capable to grow on the medium containing 20 mkg/ml of uridine or cytidine, or 100 mkg/ml of uracil, and they do not utilize thymidine, thymine, cytosine and deoxyuridine. Their ability to grow in the presence of orotic acid demonstrates that the pyrimidine synthesis in all the mutants is blocked at stages preceding the conversion of orotic acid into orotidine monophosphate. All the pyr mutants are of nuclear nature, they are recessive and represent three complementation groups located in the VIII chromosome. Unlike U. maydis mutant, the requirement in pyrimidines does not increase the sensitivity of A. nidulans pyr mutants to UV-irradiation.  相似文献   

2.
Thirty-nine riboflavin-deficient mutants have been isolated from three yeast strains of Pichia guilliermondii (ATSS 9058, VKM Y-1256, VKM Y-1257) and F5-121 mutant which is capable of production of large amounts of riboflavin in the presence of iron in the medium. All mutants were divided into five groups according to the nature of precursors accumulated in the medium and growth reaction in media with 6,7-dimethyl-8-ribityllumasine and diacetyl. The mutants of the first group did not accumulate specific precursors of riboflavin either in the cells or in the medium. The mutants of the second, third and fourth groups accumulated, after the incubation with diacetyl, 2-amino-4-hydroxy-6,7-dimethylpteridine, 2-amino-4-hydroxy-6,7-dimethyl-8-ribitylpteridine and 6,7-dimethyl-8-ribityllumasine; therefore, they synthesized the following precursors of riboflavin: 2,4,5-triamino-6-hydroxy-pyrimidine, 2,5-diamino-6-hydroxy-4-ribitylaminopyrimidine and 2,6-dihydroxy-5-amino-4-ribitylaminopyrimidine. The mutants of the fifth group accumulated 6,7-dimethyl-8-ribityllumasine in the medium and lacked riboflavin synthetase activity, as was confirmed by enzymatic studies.  相似文献   

3.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

4.
Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.  相似文献   

5.
Guanine, unlike adenine and hypoxanthine, can not eliminate the inhibitory effect of adenine analogues on the growth and flavinogenesis of Eremothecium ashbyii. Guanine does not restore riboflavin synthesis inhibited with 5-10(-3) M 8-azaguanine. Low adenine concentrations (10(-4)-3-10(-4) M), which do not influence the inhibitory effect of 5.-10(-3) M 8-azaguanine, restore the riboflavin synthesis in combination with guanine. On the basis of the data obtained as well as the data of biochemical analysis it is concluded that the riboflavin producer studied lacks guanosinemonophosphate reductase. The mutants resistant to various concentrations of 8-azaguanine have been obtained. In all mutants resistant to 8-azaguanine the efficiency of the incorporation of 14C-guanine and 14C-adenine into mycelium is decreased as compared with the susceptible strain. The mutant Azg-R 10 resistant to high (3-10(-3) M) concentrations of 8-azaguanine, 8-azaadenine and 2,6-diaminopurine secretes inosine-like compounds when grown in a synthetic medium. The stepwise increase of the mutant resistance to 8-azaguanine from 10(-4) M TO 3-10(-3) M did not result in further enhancement of riboflavin synthesis.  相似文献   

6.
The properties of mutants resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)-isoalloxazine (MTRY) were studied. The mutants were isolated from a genetic line of Pichia guilliermondii. Several of them were riboflavin overproducers and had derepressed flavinogenesis enzymes (GTP cyclohydrolase, 6.7-dimethyl-8-ribityllumazine synthase) in iron-rich medium. An additional derepression of these enzymes as well as derepression of riboflavin synthase occurred in iron-deficient medium. The characters "riboflavin oversynthesis" and "derepression of enzymes" were recessive in mutants of the 1st class, or dominant in those of the 2nd class. The hybrids of analogue-resistant strains of the 1st class with previously isolated regulatory mutants ribR (novel designation rib80) possessed the wild-type phenotype and were only capable of riboflavin overproduction under iron deficiency. Complementation analysis of the MTRY-resistant mutants showed that vitamin B2 oversynthesis and enzymes' derepression in these mutants are caused by impairment of a novel regulatory gene, RIB81. Thus, riboflavin biosynthesis in P. guilliermondii yeast is regulated at least by two genes of the negative action: RIB80 and RIB81. The meiotic segregants which contained rib80 and rib81 mutations did not show additivity in the action of the above regulatory genes. The hybrids of rib81 mutants with natural nonflavinogenic strain P. guilliermondii NF1453-1 were not capable of riboflavin oversythesis in the iron-rich medium. Apparently, the strain NF1453-1 contains an unaltered gene RIB81.  相似文献   

7.
Repression of synthesis of GTP-cyclohydrolase and riboflavinsynthetase was studied in different regulatory mutants of Bacillus subtilis. The results of experiments with some riboflavin precursors and their derivatives revealed that 5-amino-2,6-dioxo-4-ribitylaminopyrimidine and 6-methyl-7-(1',2'-dioxyethyl)-8-ribityllumazine can serve as effectors in riboflavin biosynthesis.  相似文献   

8.
9.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction of flavinogenesis.It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation.7-methyl-8-trifluoromethyl-10-(1′- -ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-mithyl-8-trifluoromethyl-10-(β-hydroxyethyl) izoalloxazine and galactoflavin exerted only a slight effect on this process.The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2′-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect.The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

10.
Phosphotransferase from carrot is shown to catalyze the phosphorylation of 6,7-dimethyl-8-ribityllumazine specifically at position 5' of the ribityl side chain. The lumazine 5'-phosphate is neither a substrate nor an inhibitor of riboflavin synthase from Bacillus subtilis and Escherichia coli. It follows that the obligatory product of riboflavin synthase is riboflavin and not FMN.  相似文献   

11.
The riboflavin overproducing mutants of the flavinogenic yeast Candida famata isolated by conventional selection methods are used for the industrial production of vitamin B2. Recently, a transformation system was developed for C. famata using the leu2 mutant as a recipient strain and Saccharomyces cerevislae LEU2 gene as a selective marker. In this paper the cloning of C. famata genes for riboflavin synthesis on the basis of developed transformation system for this yeast species is described. Riboflavin autotrophic mutants were isolated from a previously selected C. famata leu2 strain. C. famata genomic DNA library was constructed and used for cloning of the corresponding structural genes for riboflavin synthesis by complementation of the growth defects on a medium without leucine and riboflavin. As a result, the DNA fragments harboring genes RIB1, RIB2, RIB5, RIB6 and RIB7 encoding GTP cyclohydrolase, reductase, dimethylribityllumazine synthase, dihydroxybutanone phosphate synthase and riboflavin synthase, were isolated and subsequently subcloned to the smallest possible fragments. The plasmids with these genes successfully complemented riboflavin auxotrophies of the corresponding mutants of another flavinogenic yeast Pichia guilliermondii. This suggested that C. famata structural genes for riboflavin synthesis and not some of the supressor genes were cloned.  相似文献   

12.
A comparative study has been made on the sensitivity of the yeast Pichia guilliermondii to Cr (III) and Cr (VI) as well as on the Cr uptake potential at growth-inhibitory concentrations of chromium. The strains used in the study were either isolated from natural sources or obtained from a laboratory strain collection. The results show that most of the natural strains were more tolerant to chromium and were able to grow in the presence of 5 mM Cr (III) or 0.5 mM Cr (VI), that is at concentrations which substantially inhibited the growth of laboratory strains. The cellular Cr content after treatment was similar for both strain types and ranged from 1.2-4.0 mg/g d.w. and 0.4-0.9 mg/g d.w., for Cr (III) and Cr (VI) forms, respectively, however, in one case of a natural strain it reached the value of 10 mg Cr (III)/g dry mass. Natural-source strains were grouped into four groups based on the yeasts' differential response to Cr (III) and Cr (VI). Hexavalent Cr-resistant mutants of a P. giuilliermondii laboratory strain, which revealed markedly changed capabilities of chromium accumulation, were obtained by means of UV-induced mutagenesis. Cr (VI) treatment triggered oversynthesis of riboflavin and the addition of exogenous riboflavin increased P. guilliermondii resistance to both Cr (III) and Cr (VI). Electrophoretic protein profiles revealed the induction and/or suppression of several proteins in response to toxic Cr (VI) levels.  相似文献   

13.
Flavinogenic yeast overproduce riboflavin (RF) in iron-deprived media. In optimal growth media supplemented with Fe, hexavalent chromium 'Cr (VI)' treatment led to elevated RF synthesis in all cases of 37 flavinogenic strains studied. The level of RF production exceeded the rate observed at iron-deficient conditions. At sublethal Cr concentrations the RF oversynthesis over time correlated well with the growth-inhibitory adaptational period as manifested by the prolonged lag phase. The consecutive logarithmic biomass growth was accompanied by a drop in RF biosynthesis. Cr (VI)-induced RF overproduction was not a result of cellular iron level decrease. The treatment of yeast with Cr (VI) led to the stimulation of GTP-cyclohydrolase and RF-synthase activities, the key enzymes of the RF biosynthesis pathway.  相似文献   

14.
With the purpose of studying the mechanism of ozone action on uterus smooth muscles it was investigated the influence of ozone-content (approximately 0.50 mkg/ml) Krebs' solution or its 10- and 100-fold dissolution on contractile activity and beta-adrenoreactivity of 56 longitudinal strips of uterus horns of 17 nonpregnant rats. Ozone at concentration approximately 0.50 mkg/ml (but not in concentration of approximately 0.05 and approximately 0.005 mkg/ml) reversibly raised frequency, amplitude and total contractile activity of intact myometrium strips, and also fast and reversibly reducel its beta-adrenoreactivity, i.e. decreased of inhibitory action of adrenaline (10(-8), 10(-7), 10(-6) g/ml), but did not change uterostimulatory effect of acetylcholine (10(-6) g/ml) and oxiyocin (5 x 10(-4) ME/ml), what evident about specificity of ozone beta-adrenoblokate effect. Ozone (approximately 0.50 and 0.05 mkg/ml) did not change ov value of potassium contracture of myometrium strips which was depolarized by hyperpotassium (60 mM KCL) Krebs' solution, but reduced inhibitory action of adrenaline (10(-8) g/ml). The question is being discussed about mechanisms of ozone beta-adrenoblocade actions, about clinical role of this phenomenon, and the possibility of using beta-adrenoreceptor sensibilizators direct action (histidine, tryptophan, tyrosine, trimetazidin and mildronat) at ozonotherapy with the purpose reduction of its negative effects.  相似文献   

15.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5-1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b2, whereas the hitl mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

16.
Using thin-layer chromatography, 16 bacterial isolates from root nodules of 8 differentPsoralea species were quantitatively assessed for their exudation of the metabolites lumichrome, riboflavin and IAA in response to pH, salinity and temperature. Our data showed that the bacterial strains tested differed in their levels of secretion of the three metabolites. For example, strain AS2 produced significantly greater amounts of lumichrome at both pH 5.1 and 8.1, while strains RT1 and PI produced more lumichrome per cell at only pH 8.1. Strains API and RP2 also produced more riboflavin at pH 5.1 than at pH 8.1; conversely strain RTl secreted more riboflavin at pH 8.1 than at pH 5.1. TwoP. repens strains (RP1 and RP2) isolated from very saline environments close to the Indian Ocean produced significant levels of lumichrome and riboflavin at both low and high salinity treatments. However, strains ACI and LI (fromP. aculeata andP. laxa) even produced greater amounts of lumichrome and riboflavin at higher salinity (i.e. 34.2 mM NaCl) and probably originated from naturally saline soils. In this study, high acidity and high temperature induced the synthesis and release of high levels of IAA by bacterial cells. In contrast, there was greater strain secretion of lumichrome at lower temperature (10°C) than at high temperature (30°C). The variations in the secretion of lumichrome, riboflavin and IAA by bacterial strains exposed to different pH, salinity and temperature regimes suggest that genes encoding these metabolites are regulated differently by the imposed environmental factors. The data from this study also suggest that natural changes of pH, salinity and/or temperature in plant rhizospheres could potentially elevate the concentrations of lumichrome, riboflavin and IAA in soils. An accumulation of these molecules in the rhizosphere would have consequences for ecosystem functioning as both lumichrome and riboflavin have been reported to act as developmental signals that affect species in all three plant, animal, and microbial kingdoms.  相似文献   

17.
Riboflavin deposition in organs of Drosophila hydei was studied by means of a growth test using a riboflavin-deficient strain of the fungus Aspergillus nidulans. In wild-type animals, riboflavin is deposited in Malpighian tubules (MT) and testes but not in adult eyes. Certain white (w) mutants do not contain riboflavin, whereas intermediately colored w mutants contain minor amounts of the substance. Riboflavin-containing MT cells contain special globules that can be fixed and stained with the redox dye phenazine-methosulphate. The number and size of these granules is related to growth effect and point to a role of the w locus in the intracellular deposition of riboflavin in special organs. In white-mottled (wm) position-effect variegation mutants, a significant correlation was found between the extent of variegation (percentage of yellow cells) and riboflavin content (growth effect) of the MT. However, the individual variation of cell phenotype was extremely large and exaggerated types were observed indicating "overdominance" of the rearranged w+ gene. This contradicts an unsubstantiated dogma of position-effect variegation that assumes that the affected gene simply switches between the on and off state, as is discussed.  相似文献   

18.
The effect of N-nitroso-N-methylurea (NMU), N-nitroso-N,N'-dimethylurea (NDMU) and N-nitroso-N-ethylurea (NEU) at doses less than 100 mkg/ml on mutability of Salmonella typhimurium strains of Ames' system (G-46, TA-1950, TA-1535, TA-100, TA-1538) has been studied. NMU and NEU at doses of 5-10 mkg/ml have been found to increase the survival and decrease the number of reversions from auxotrophity in histidine to prototrophity. The effect of given doses of NMU and NEU on bacteria repair activity has been shown. The role of pk M101 plasmide in this process is being discussed. NDMU in contrast to NMU and NEU induces read frome shift mutations and exhibits high mutagenous activity at all doses examined.  相似文献   

19.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

20.
A G Samovar 《Parazitologiia》1985,19(3):232-237
By gradual (during several months) increase of the concentrations of cycloheximide (C) and chloramphenicol (Ch) in cultural medium there were obtained strains of C. oncopelti resistant to the effect of 20, 50, 100 mkg/ml and 2.5 mg/ml Ch. During 38, 28, 19 and 12 subculturings (that corresponds to 160, 120, 80 and 50 cell generations, respectively) on media without inhibitors parasites preserve their resistance to corresponding concentrations of C and Ch without essential changes. Cross resistance between obtained strains of Crithidia was missing. Therefore, the characters of resistance to C and Ch are rather specific, genetically specified and can be used as genetical markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号