首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spontaneous quantal release of neurotransmitter and the fine structure of a glutamatergic synapse has been examined in the presence of ionophore X-537A. Bath applications of X-537A to extensor tibiae nerve-muscle preparations of locust, Schistocerca gregaria, increased the frequency of miniature excitatory post-synaptic potentials (min. e.p.s.p.'s). This action was completely reversible, if preparations were exposed to ionophore for less than 60 min. Application of ionophore for longer times, i.e., longer than 60 min., transiently elevated min. e.p.s.p. frequency to greater than 100/s. Following this period of high activity, miniature frequency declined to 0.4/s and were mostly of "giant" miniature potentials type. The frequency and amplitude of these "giant" miniature potentials remained unchanged after subsequent washing with standard saline. Exposure of nerve terminals to ionophore for 60 min. produced no ultrastructure changes. Longer ionophore treatments, however, led to depletion of synaptic vesicles, damaged mitochondria and disintegration of microtubules and neurofilaments within nerve terminals, suggesting irreversible changes at the locust neuromuscular junction.  相似文献   

2.
The most consistent effects produced by intracellular injections of guanosine 3',5'-cyclic monophosphate (cGMP) (but not 5'-guanosine 5'-monophosphate in spinal motoneurons of cats are a rise in membrane conductance, acceleration in time course of spike potentials, and accentuation of the post-spike hyperpolarization. Associated changes in resting potential are smaller, less constant, and more often in the depolarizing than hyperpolarizing direction, cGMP tends to increase electrical excitability but reduces excitatory post-synaptic potential amplitudes. Most of the effects of intracellular cGMP are quite different from, or indeed opposite to, those of either extra- or intracellular applications of acetylcholine and therefore not consistent with the proposal that cGMP is the internal mediator of muscarinic actions.  相似文献   

3.
Summary The muscle fibers of brown and red chromatophores in the skin of the squid, Loligo opalescens, respond to motor nerve stimulation with non-propagating excitatory postsynaptic potentials (e.p.s.p.'s) of fluctuating amplitude. Depending on the strength of stimulation several size classes of e.p.s.p.'s are found, indicating polyneuronal innervation. Facilitation and summation are minimal even though the reversal potential of the e.p.s.p.'s is close to zero.Acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) have no effect on membrane characteristics of the muscle fiber, but ACh greatly augments the spontaneous quantal release of transmitter [increase in the frequency of miniature postsynaptic potentials (m.p.s.p.'s)] and thereby causes tonic contraction (miniature tetanus). 5-HT reduces the frequency of miniature potentials and abolishes tonic contraction. Inhibition of cholinesterase by eserine does not affect the amplitude or time course of e.p.s.p.'s and of m.p.s.p.'s. High concentrations of cholinergic blocking agents (atropine, banthine) reduce the postsynaptic effects of nerve stimulation in some cases. The natural transmitter substance of the motoneurones may not be ACh. The action of 5-HT appears to be intracellular.Neighboring muscle fibers are electrically coupled through low resistance pathways. These are most likely provided by the close junctions that form part of the myo-muscular junctions. The specific membrane resistance of the regular muscle fiber membrane was found to range from 1,056 to 1,320 Ohm×cm2, that of the close junctions ranges from 12.8 to 22.6 Ohm×cm2. The area occupied by close junctions is small, however, and only 10% of the current injected into one cell passes into the next. Some of the e.p.s.p.'s observed in a given muscle fiber most likely represent the electrotonic spread of the e.p.s.p.'s of the neighbor fibers. Of the six classes of e.p.s.p.'s observed in some muscle fibers, only two may originate in these fibers themselves.Chromatophores in aged preparations often exhibit pulsations. These are caused by spike potentials arising within muscle fibers whose membranes have become electrically excitable. Each spike is preceded by a generator depolarization. The electrical coupling of neighboring muscle cells permits conduction of the spike potentials throughout the set of muscle fibers of a pulsating chromatophore. Altered conditions within such preparations also lead to tonic contractions and contractures that are not necessarily accompanied by electrical activity. Several arguments are presented in support of the hypothesis that the tonic condition of nerve terminals (characterized by enhanced spontaneous transmitter release) and of muscle fibers (characterized by inability to relax) is due to an abnormal condition of intracellular calcium (lack of Ca-binding by sarcoplasmic reticulum or other storage sites).No evidence could be found for an inhibitory innervation of the chromatophore muscles. The nerve-induced relaxation of tonically contracted muscle fibers is caused by the action of motoneurones.Preliminary experiments on muscle fibers of the anterior byssus retractor muscle of Mytilus support the hypothesis that the tonic behavior (catch) of other molluscan muscles is due to mechanisms similar to those found in the chromatophore muscles.This investigation was supported by Public Health Service Grant No. NB 04145 from the National Institute of Neurological Diseases and Blindness. We are grateful to the director of the Friday Harbor Laboratories, Prof. R. L. Fernald for providing space and facilities for this investigation.Supported by a Training Grant GM 1194 from the National Institute of General Medical Sciences.  相似文献   

4.
(1) The musculature of the walking legs is analysed with regard to both morphology and function in the scorpion, Vaejovis spinigerus (Wood, 1863) (Vaejovidae, Scorpiones, Arachnida), and selected other species. Conspicuous features are multipartite muscles, muscles spanning two joints, and partial lack of antagonistic muscles. The muscle arrangement is compared to that in the walking limbs of other Arthropoda and possible phylogenetic implications are discussed. (2). Histochemical characterisation of selected leg muscles indicates that these are composed of layers of slow, intermediate and fast muscle fibres. Anti-GABA immunohistochemistry shows that mainly the intermediate fibres receive innervation from putative inhibitory motoneurons. (3). Intracellular recording from muscle fibres reveals both excitatory and inhibitory muscle innervation. Individual muscle fibres may receive input from more than one inhibitory motoneuron, as indicated by different IPSP amplitudes. (4). The motoneuron supply of the leg muscles is analysed by retrograde fills of motor nerves. The general arrangement of leg motoneurons in the central nervous system and motoneuron anatomy conforms to the situation in pterygote insects and decapod crustaceans. For example, there are an anterior and a posterior group of leg motoneurons in each hemineuromere, and two contralateral somata near the ganglion midline. Between 12 and 20 motoneurons are found to supply each muscle. Most motoneuron cell bodies supplying a given muscle are arranged in a single cluster with a specific location.  相似文献   

5.
Displacement of the abdominal cuticle of the hermit crab, Pagurus pollicarus, activates motoneurons of the ventral superficial muscles that mediate posture and slow movements. Five excitatory motoneurons innervating the right ventral superficial muscle of the fourth abdominal segment were activated in a phasic stereotyped fashion in the isolated nervous system. Intracellular records from these motoneurons showed an initial monosynaptic burst, a period of inhibition in which inhibitory post-synaptic potentials were present and then a later period of increased spike frequency generated by excitatory post-synaptic potentials. The reflex response was maintained after severing all ganglionic roots from peripheral structures, isolating the nerve cord from peripheral feedback pathways. The two excitatory components of the response showed a dependence on strain that was much smaller than that found in sensory afferents. There was no relationship between the site of touch to the cuticle and the intensity or pattern of activation of the motoneurons. The reflex burst produced a transient activation of both longitudinal and transverse/circular layers of the muscle with forces that varied between 10% and 25% of the maximum muscle force. These results are consistent with a feedforward regulation of muscle stiffness.  相似文献   

6.
The present study was aimed at determining if inputs from the locus coeruleus (LC) have any effect on repetitive firing of ventral horn motoneurons in cats. In hindlimb flexor and extensor motoneurons stimulated intrasomatically with current below the threshold for repetitive discharges, added LC-evoked excitatory post-synaptic potentials (EPSPs) were consistently found to produce repetitive firing, suggesting a lowering in the repetitive firing threshold attributable to excitatory LC inputs. With those extensor motoneurons showing episodic, self-sustained firing, LC-EPSPs introduced during the quiescent period were capable of starting a continuous discharge with rhythmic frequencies higher than the spontaneous activity. In some of these cells, intracellularly applied hyperpolarizing current was able to stop the spontaneous discharges. Subsequently, LC stimuli were found to reinitiate repetitive discharges, thus counteracting the ongoing suppression of the motoneurons. Quantitative analysis of the single-spike afterhyperpolarization (AHP) indicated a consistent reduction in its amplitude and time course (duration, time-to-peak, half-decay time) for flexor and extensor motoneurons in response to LC conditioning stimuli. Present results suggest an excitatory LC action on the repetitive discharges of cat motoneurons accompanied by a concurrent decrease in the amplitude and time course of the single-spike AHPs.  相似文献   

7.
Thyrotropin-releasing hormone (TRH) produced a depolarization in lumbar motoneurons of neonatal rats. The depolarization by TRH persisted after extracellular Ca2+ was replaced by Mg2+ or Mn2+, indicating its direct action upon motoneurons. Stimulation of the ventral descending tract at the lower thoracic segment evoked slow excitatory postsynaptic potentials (e.p.s.ps) lasting 20-30 s in every motoneuron. Both the TRH-induced depolarization and descending slow e.p.s.p. were accompanied by a decrease in input conductance of motoneurons. When the membrane potential of the motoneuron was shifted, both the TRH-induced depolarization and slow e.p.s.p. became larger in amplitude during depolarization and smaller during hyperpolarization. However, they could not be reversed in polarity by hyperpolarization. During the depolarization of motoneuron produced by TRH application, the slow e.p.s.p. was markedly reduced in amplitude, suggesting the involvement of identical ionic mechanisms in the two responses. After incubation of the isolated spinal cord with antisera to TRH, the depolarizing response produced by TRH as well as the descending slow e.p.s.p. was greatly diminished. In contrast, monosynaptic reflexes evoked by dorsal root stimulation remained unchanged under this condition. These results suggest that TRH serves as a neurotransmitter mediating the descending slow e.p.s.p. in motoneurons.  相似文献   

8.
Miniature end-plate potentials were used in studying severalaspects of the neuromuscular systems in the cockroach femur.The similar sizes and time courses of miniatures associatedwith fast and slow type excitatory axons suggest that they employthe same transmitter. There is other evidence also indicatingthat the essential difference between these two excitatory systemsis in the number of packets of transmitter released per nerveimpulse rather than different transmitter substances. From theshapes of miniatures it was suspected that typical muscle fibersmight have a branching structure. This was confirmed by histologicalexamination, intracellular stimulation, and intracellular dyeinjection. That inhibitory transmission is quantal is indicatedby hyperpolarizing miniatures which occur at random time intervals.Inhibitory transmission can be made to fail and recover in astepwise manner by manipulating the Ca/Mg ratio. In studiesof toxins which affect transmitter release at vertebrate motorend-plates, botulinal toxin was found to be without effect ateither excitatory or inhibitory junctions in cockroach muscle.However, black widow spider venom acted as it does in vertebrates,promoting massive release of transmitters and then permanentinactivation of the junctions.  相似文献   

9.
A detailed mathematical analysis of the diffusion process of neurotransmitter inside the synaptic cleft is presented and the spatio-temporal concentration profile is calculated. Using information about the experimentally observed time course of glutamate in the cleft the effective diffusion coefficient Dnet is estimated as Dnet approximately 20-50 nm(2) microseconds(-1), implying a strong reduction compared with free diffusion in aqueous solution. The tortuosity of the cleft and interactions with transporter molecules are assumed to affect the transmitter motion. We estimate the transporter density to be 5170 to 8900 micrometer(-2) in the synaptic cleft and its vicinity, using the experimentally observed time constant of glutamate. Furthermore a theoretical model of synaptic transmission is presented, taking the spatial distribution of post-synaptic (AMPA-) receptors into account. The transmitter diffusion and receptor dynamics are modeled by Monte Carlo simulations preserving the typically observed noisy character of post-synaptic responses. Distributions of amplitudes, rise and decay times are calculated and shown to agree well with experiments. Average open probabilities are computed from a novel kinetic model and are shown to agree with averages over many Monte Carlo runs. Our results suggest that post-synaptic currents are only weakly potentiated by clustering of post-synaptic receptors, but increase linearly with the total number of receptors. Distributions of amplitudes and rise times are used to discriminate between different morphologies, e.g. simple and perforated synapses. A skew in the miniature amplitude distribution can be caused by multiple release of pre-synaptic vesicles at perforated synapses.  相似文献   

10.
Two buccal mass retractor muscles of Philine are innervatedby at least 4 excitatory motoneurons, whose cell bodies liein the buccal and the cerebral ganglia. The muscle fibres respondto action potentials generated in the motoneurons or their axonswith excitatory junction potentials (ejps), each of which isfollowed by a small twitch-like contraction. Both the electricaland mechanical responses facilitate and summate with repetitivestimulation. A large ventrally located cerebral neuron (VGC) inhibits tensiondevelopment in the muscle by reducing the amplitude of the excitatoryjunction potentials from and identified buccal motoneuron. Acetylcholinereversibly depolarises and causes tonic contraction of the muscles.This action is partially antagonised by hexamethonium, whichalso blocks the ejps from two axons in the buccal and one inthe pedal nerve 9. 5-Hydroxytryptamine potentiates the ejp fromthe identified buccal motoneuron and enhances the rate of relaxation.Histamine reduces the amplitude of the presumed cholinergicbuccal nerve ejps, but does not affect the hexamethonium sensitiveejp in the pedal nerve 9. In this respect its action resemblesthat of the ventral giant cell.  相似文献   

11.
Patch clamp recordings of excitatory postsynaptic currents (EPSCs) in central neurons reveal large fluctuations in amplitudes and decay times of AMPA-receptor-mediated EPSCs. By using Monte Carlo simulations of synaptic transmission in brainstem interneurons, we tested several hypothesis that could account for the observed variability. The coefficient of variation (CV) of 0.5 for miniature amplitudes cannot be explained by fluctuations in vesicle content or receptor distribution, but is traced to variations in receptor number, which is estimated as 77+/-39 receptors per bouton. As the variability of rise times reflects fluctuations in size of the post-synaptic density and heterogeneity of the receptor distribution, the relatively small CV=0.37 of experimentally determined values points to a homogeneous arrangement of receptors. Within our model the large variability of decay times (CV=0.49) can only be explained by fluctuations in the transmitter time course (mean residence times of 0.4+/-0.13 ms), presumably resulting from heterogeneities in synaptic morphology. Hence, our simulations indicate that different noise sources control the variability of amplitudes, rise and decay times. In particular, the distribution of decay times yields information about the synaptic transmission process, which cannot be obtained from other observables.  相似文献   

12.
A preferred amplitude of calcium sparks in skeletal muscle   总被引:7,自引:0,他引:7       下载免费PDF全文
In skeletal and cardiac muscle, calcium release from the sarcoplasmic reticulum, leading to contraction, often results in calcium sparks. Because sparks are recorded by confocal microscopy in line-scanning mode, their measured amplitude depends on their true amplitude and the position of the spark relative to the scanned line. We present a method to derive from measured amplitude histograms the actual distribution of spark amplitudes. The method worked well when tested on simulated distributions of experimental sparks. Applied to massive numbers of sparks imaged in frog skeletal muscle under voltage clamp in reference conditions, the method yielded either a decaying amplitude distribution (6 cells) or one with a central mode (5 cells). Caffeine at 0.5 or 1 mM reversibly enhanced this mode (5 cells) or induced its appearance (4 cells). The occurrence of a mode in the amplitude distribution was highly correlated with the presence of a mode in the distribution of spark rise times or in the joint distribution of rise times and spatial widths. If sparks were produced by individual Markovian release channels evolving reversibly, they should not have a preferred rise time or amplitude. Channel groups, instead, could cooperate allosterically or through their calcium sensitivity, and give rise to a stereotyped amplitude in their collective spark.  相似文献   

13.
G Hess  U Kuhnt 《Folia biologica》1989,37(3-4):195-202
A minimal intensity of the stimulation necessary for the induction of long-term potentiation of synaptic transmission (LTP) was investigated by intracellular recording in guinea pig in vitro hippocampal slices. High frequency stimulation of afferent fibres at intensities evoking in CA 1 neurons control excitatory postsynaptic potentials (EPSPs) of amplitudes 1-5 mV, resulted usually in a long-lasting increase in response amplitude. LTP was not observed at lower stimulus strength. The coactivation of a certain, though small number of synaptic contacts is thus necessary for the production of LTP.  相似文献   

14.
Neurological signs during dives may result from altered excitability of central neurons. The present study assesses the effect of an increase in pressure from 1 to 3 ATA on the excitability of muscle spindles and alpha motoneurons by comparing the EMG amplitudes of the mechanically and electrically elicited monosynaptic reflexes of the gastrocnemius-soleus muscle in 10 normal adults breathing a normoxic oxygen-nitrogen gas mixture. At the surface the amplitude of the electrically elicited H response was matched to that of the mechanically elicited Achilles tendon reflex (ATR), but at depth these amplitudes became significantly different. In every subject the amplitude of the ATR, which depends upon the excitability of both muscle spindles and the alpha motoneurons, was reduced on an average of 38% (with a range of 12-75%). The H response bypasses the muscle spindles and hence, depends primarily upon alpha motoneuron excitability. Its amplitude was unaltered in four, reduced in three, and increased in three subjects. Since the ATR was always depressed despite the direction of change in the H response, we have concluded that an increase in ambient pressure (i.e., pressure per se, or nitrogen, or both) must have decreased the responsiveness of muscle spindles to the tendon tap via a reduction in fusimotor activity.  相似文献   

15.
Long-term adaptation resulting in a 'tonic-like' state can be induced in phasic motor neurons of the crayfish, Procambarus clarkii, by daily low-frequency stimulation [Lnenicka, G.A., Atwood, H.L., 1985b. Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. J. Neurobiol. 16, 97-110]. To test the hypothesis that motor neurons undergoing adaptation show increased responses to the neuromodulator serotonin (5-HT), phasic motor neurons innervating the deep abdominal extensor muscles of crayfish were stimulated at 2.5 Hz, 2 h/day, for 7 days. One day after cessation of conditioning, contralateral control and conditioned motor neurons of the same segment were stimulated at 1 Hz and the induced excitatory post-synaptic potentials (EPSPs) were recorded from DEL(1) muscle fibers innervated by each motor neuron type. Recordings were made in saline without and with 100 nM 5-HT. EPSP amplitudes were increased by 5-HT exposure in all cases. Conditioned muscles exposed to 5-HT showed a 2-fold higher percentage of increase in EPSP amplitude than did control muscles. Thus, the conditioned motor neurons behaved like intrinsically tonic motoneurons in their response to 5-HT. While these results show that long-term adaptation (LTA) extends to 5-HT neuromodulation, no phenotype switch could be detected in the postsynaptic muscle. Protein isoform profiles, including the myosin heavy chains, do not change after 1 week of conditioning their innervating motor neurons.  相似文献   

16.
The mRNA populations of control and 8-days-denervated adult rat gastrocnemius have been analysed by the translation assay and the cDNA-mRNA molecular hybridization technique. This analysis demonstrates the appearance of marked changes in many of the mRNA sequences present in muscle fibres following denervation and thus gives strong support to the hypothesis that the motoneurons are able to control the gene expression of muscle fibres.  相似文献   

17.
Miniature endplate potentials (MEPPs) are regarded as the expression of release of a single quantum of acetylcholine by motor nerve endings in the muscle. Mepp frequency is dependent on the presynaptic mechanism, but MEPP amplitudes and time courses are the result of the characteristics of pre- and postsynaptic structures and of the interaction between them. After post-traumatic reinnervation of skeletal muscles, MEPP frequency increases, reaching slowly normal values. Two groups of male, Sprague Dawley rats were used: in the first group left sciatic nerve was crushed and nerve fibres were allowed to regenerate, whereas the others were regarded as controls. MEPPs were intracellularly recorded in end plates of normal and reinnervated left extensor digitorum longus muscle. MEPPs were sampled and recorded on a personal computer, and, subsequently, amplitude, rise time and half decay time were computed. At early stage after reinnervation, MEPPs showed rise times and decay times longer than normal. Afterwards, we did not find differences between mepp time courses by normal and reinnervated end plates. The possible relationships between the results and changes in acetylcholine receptor number and type, and in acetylcholinesterase activity occurring during denervation and reinnervation are discussed.  相似文献   

18.
The sensory inputs to the common inhibitory motoneuron that innervates every leg muscle of the crayfish Procambarus clarkii (Girard) were analyzed by performing intracellular recordings from its neurite within the neuropil of the 5th thoracic ganglion. Two types of sensory inputs involved in locomotion were studied, those from a movement coding proprioceptor (the coxobasal chordotonal organ) and those from sensory neu rons coding contact forces exerted at the tip of the leg on the substrate (the dactyl sensory afferents). Sinusoidal movements applied to the chordotonal organ strand induced a stable biphasic response in the common inhibitory motoneuron that consisted of bursts of spikes during release and stretch of the strand, corresponding to raising and lowering of the leg, respectively. Using ramp movements imposed on the chordotonal strand, we demonstrated that only movement-coding chordotonal afferents produce excitatory post-synaptic potentials in the common inhibitory motoneuron; these connections are monosynaptic. Mechanical or electrical stimulation of the dactyl sensory afferents resulted in an increase in the tonic discharge of the common inhibitory motoneuron through polysynaptic excitatory pathways. These two types of sensory cues reinforce the central command of the common inhibitory motoneuron and contribute to enhancing its activity during leg movements, and thus facilitate the relaxation of tonic muscle fibres during locomotion.Abbreviations ADR anterior distal root - A Lev anterior levator nerve - CB coxo-basipodite joint - CBCO coxo-basal chordotonal organ - CI common inhibitory motoneuron - Dep depressor nerve - DSA dactyl sensory afferents - EPSP excitatory post-synaptic potential - IN interneuron - MN motoneuron - PDR posterior distal root - P Lev posterior levator nerve - Pro promotor nerve - Rem remotor nerve  相似文献   

19.
The inhibitory motoneurons of crustaceans form synapses both with the sarcolemma of muscle fibres and with the very distal branchings of the excitatory motoneurons. The transmitter of these synapses is GABA (γ-aminobutyric acid) which is known to open Cl channels. Studies on the dactyl opener muscle of crayfish suggest that application of GABA not only leads to an increase in the Cl permeability but also to a considerable HCO 3 conductance that causes an intracellular acidification. To investigate possible physiological implications, we measured the intracellular pH of various muscle fibre types of crayfish and crab using pH-sensitive microelectrodes. Independent of the presence or absence of inhibitory innervation, bath application of 10−5 mol l−1 GABA led to acidification in all fibre types (pH change: 0.14 ± 0.08, n=11). In no preparation was a change in intracellular pH observed upon stimulation of specific or common inhibitory motoneurons with 10–40 pulses s−1 for 2–5 min. The results suggest that HCO 3 conductance cannot be activated through synaptic GABA receptors. However, all crustacean muscle fibre types seem to possess extrasynaptic GABA-sensitive channels that exhibit a considerable HCO 3 conductance. The physiological importance of these channels remains to be elucidated. Accepted: 13 July 2000  相似文献   

20.
The dependence of extracellular action potentials (ECAPs) of single frog muscle fibres on intracellular action potentials (ICAPs) was studied during long-lasting (fatiguing) activity. The conduction velocity, peak-to-peak amplitude and amplitudes of the separate phases of the first and second ICAP time derivatives decreased during long-lasting activity. The phases of the first and second ICAP space derivatives also decreased in amplitude and lengthened. ECAPs near the membrane were similar in shape and proportional in amplitude to (formula; see text) when recording at a distance from both the end of the fibre and the point of stimulation. At long radial distances, the amplitudes of the separate ECAP phases depended on the amplitude and length of the corresponding phases of (formula; see text). Thus the decrease in ECAP amplitude during long-lasting activity at long radial distances was less than at points close to the muscle fibre membrane. The consequences of these findings for the changes in electromyograms recorded by needle or superficial electrodes during long-lasting (fatiguing) activity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号