首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clathrin-coated vesicles mediate endocytosis and transport between the trans-Golgi network (TGN) and endosomes in eukaryotic cells. Clathrin adaptors play central roles in coat assembly, interacting with clathrin, cargo and membranes. Two main types of clathrin adaptor act in TGN-endosome traffic: GGA proteins and the AP-1 complex. Here we characterize the relationship between GGA proteins, AP-1 and other TGN clathrin adaptors using live-cell and super-resolution microscopy in yeast. We present evidence that GGA proteins and AP-1 are recruited sequentially in two waves of coat assembly at the TGN. Mutations that decrease phosphatidylinositol 4-phosphate (PtdIns(4)P) levels at the TGN slow or uncouple AP-1 coat assembly from GGA coat assembly. Conversely, enhanced PtdIns(4)P synthesis shortens the time between adaptor waves. Gga2p binds directly to the TGN PtdIns(4)-kinase Pik1p and contributes to Pik1p recruitment. These results identify a PtdIns(4)P-based mechanism for regulating progressive assembly of adaptor-specific clathrin coats at the TGN.  相似文献   

2.
Assembly protein (AP) preparations from bovine brain coated vesicles have been fractionated by clathrin-Sepharose affinity chromatography. Two distinct fractions that possess coat assembly activity were obtained and are termed AP-1 and AP-2. The AP-1, not retained on the resin, has principal components with molecular weights of 108,000, 100,000, 47,000, and 19,000. The AP-2, bound to the resin and eluted by Tris-HCl at a concentration that parallels the latter's effect on coat disassembly, corresponds to the active complex described previously (Zaremba, S., and J. H. Keen, 1983, J. Cell Biol., 97:1339-1347). Its composition is similar to that of the AP-1 in that it contains 100,000-, 50,000-, and 16,000-mol-wt polypeptides in equimolar amounts; minor amounts of 112,000- and 115,000-mol-wt polypeptides are also present. Both are distinct from a recently described assembly protein of larger subunit molecular weight that we term AP-3. These results indicate the existence of a family of assembly proteins within cells. On incubation with clathrin both AP-1 and AP-2 induce the formation of coat structures, those containing AP-1 slightly smaller (mean diameter = 72 nm) than those formed in the presence of AP-2 (mean diameter = 79 nm); both structures have been detected previously in coated vesicle preparations from brain. Coats formed in the presence of AP-2 consistently contain approximately one molecule each of the 100,000-, 50,000-, and 16,000-mol-wt polypeptides per clathrin trimer. By low angle laser light scattering the molecular weight of native AP-2 was determined to be approximately 343,000, indicating that it is a dimer of each of the three subunits, and implying that it is functionally bivalent in clathrin binding. A model for AP-mediated coat assembly is proposed in which a bivalent AP-2 molecule bridges the distal legs or terminal domains of two clathrin trimers that are destined to occupy adjacent vertices in the assembled coat. Binding of a second AP-2 molecule locks these two trimers in register for assembly and further addition of AP-2 to free trimer legs promotes completion of the clathrin lattice. Effects of AP binding on the angle and flexibility of the legs at the hub of the trimer (the "pucker") are suggested to account for the characteristic size distributions of coats formed under varied conditions and, more speculatively, to contribute to the transformation of flat clathrin lattices to curved coated vesicles that are thought to occur during endocytosis.  相似文献   

3.
The formation of small vesicles is mediated by cytoplasmic coats the assembly of which is regulated by the activity of GTPases, kinases, and phosphatases. A heterotetrameric AP-3 adaptor complex has been implicated in the formation of synaptic vesicles from PC12 endosomes (). When the small GTPase ARF1 is prevented from hydrolyzing GTP, we can reconstitute AP-3 recruitment to synaptic vesicle membranes in an assembly reaction that requires temperatures above 15 degrees C and the presence of ATP suggesting that an enzymatic step is involved in the coat assembly. We have now found an enzymatic reaction, the phosphorylation of the AP-3 adaptor complex, that is linked with synaptic vesicle coating. Phosphorylation occurs in the beta3 subunit of the complex by a kinase similar to casein kinase 1alpha. The kinase copurifies with neuronal-specific AP-3. In vitro, purified casein kinase I selectively phosphorylates the beta3A and beta3B subunit at its hinge domain. Inhibiting the kinase hinders the recruitment of AP-3 to synaptic vesicles. The same inhibitors that prevent coat assembly in vitro also inhibit the formation of synaptic vesicles in PC12 cells. The data suggest, therefore, that the mechanism of AP-3-mediated vesiculation from neuroendocrine endosomes requires the phosphorylation of the adaptor complex at a step during or after AP-3 recruitment to membranes.  相似文献   

4.
Epsin and AP180/CALM are important endocytic accessory proteins that are believed to be involved in the formation of clathrin coats. Both proteins associate with phosphorylated membrane inositol lipids through their epsin N-terminal homology domains and with other components of the endocytic machinery through short peptide motifs in their carboxyl-terminal segments. Using hydrodynamic and spectroscopic methods, we demonstrate that the parts of epsin 1 and AP180 that are involved in protein-protein interactions behave as poorly structured flexible polypeptide chains with little or no conventional secondary structure. The predominant cytosolic forms of both proteins are monomers. Furthermore, we show that recombinant epsin 1, like AP180, drives in vitro assembly of clathrin cages. We conclude that the epsin N-terminal homology domain-containing proteins AP180/CALM and epsin 1 have a very similar molecular architecture that is designed for the rapid and efficient recruitment of the principal coat components clathrin and AP-2 at the sites of coated pit assembly.  相似文献   

5.
The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.  相似文献   

6.
The clathrin triskelion, which is a three-legged pinwheel-shaped heteropolymer, is a major component in the protein coats of certain post-Golgi and endocytic vesicles. At low pH, or at physiological pH in the presence of assembly proteins, triskelia will self-assemble to form a closed clathrin cage, or “basket”. Recent static light scattering and dynamic light scattering studies of triskelia in solution showed that an individual triskelion has an intrinsic pucker similar to, but differing from, that inferred from a high resolution cryoEM structure of a triskelion in a clathrin basket. We extend the earlier solution studies by performing small-angle neutron scattering (SANS) experiments on isolated triskelia, allowing us to examine a higher q range than that probed by static light scattering. Results of the SANS measurements are consistent with the light scattering measurements, but show a shoulder in the scattering function at intermediate q values (0.016 Å−1), just beyond the Guinier regime. This feature can be accounted for by Brownian dynamics simulations based on flexible bead-spring models of a triskelion, which generate time-averaged scattering functions. Calculated scattering profiles are in good agreement with the experimental SANS profiles when the persistence length of the assumed semiflexible triskelion is close to that previously estimated from the analysis of electron micrographs.  相似文献   

7.
The beta 1 and beta 2 subunits are the closely-related large chains of the trans-Golgi network AP-1 and the plasma membrane AP-2 clathrin-associated protein complexes, respectively. Recombinant beta 1 and beta 2 subunits have been generated in Escherichia coli. It was found that, in the absence of all the other AP subunits, beta 1 and beta 2 interact with clathrin and drive the efficient assembly of clathrin coats. In addition, beta 2 subunits and AP complexes compete for the same clathrin binding site. The appearance of the clathrin/beta coats is the same as the barrel-shaped structures formed with native AP complexes. It is proposed that the principal function of the beta subunits is to initiate coat formation, while the remaining subunits of the AP complexes have other roles in coated pit and coated vesicle function.  相似文献   

8.
A principal component in the protein coats of certain post-golgi and endocytic vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triskelion) that assembles into polyhedral cages principally made up of pentagonal and hexagonal faces. In vitro, this assembly depends upon the pH, with cages forming more readily at low pH and less readily at high pH. We have developed procedures, on the basis of static and dynamic light scattering, to determine the radius of gyration, R(g), and hydrodynamic radius, R(H), of isolated triskelia, under conditions where cage assembly occurs. Calculations based on rigid molecular bead models of a triskelion show that the measured values can be accounted for by bending the legs and a puckering at the vertex. We also show that the values of R(g) and R(H) measured for clathrin triskelia in solution are qualitatively consistent with the conformation of a triskelion in a "D6 barrel" cage assembly measured by cryoelectron microscopy.  相似文献   

9.
The 70-kDa heat-shock cognate protein (Hsc70) chaperone is an ATP-dependent "disassembly enzyme" for many subcellular structures, including clathrin-coated vesicles where it functions as an uncoating ATPase. Hsc70, and its cochaperone auxilin together catalyze coat disassembly. Like other members of the Hsp70 chaperone family, it is thought that ATP-bound Hsc70 recognizes the clathrin triskelion through an unfolded exposed hydrophobic segment. The best candidate is the unstructured C terminus (residues 1631-1675) of the heavy chain at the foot of the tripod below the hub, containing the sequence motif QLMLT, closely related to the sequence bound preferentially by the substrate groove of Hsc70 (Fotin et al., 2004b). To test this hypothesis, we generated in insect cells recombinant mammalian triskelions that in vitro form clathrin cages and clathrin/AP-2 coats exactly like those assembled from native clathrin. We show that coats assembled from recombinant clathrin are good substrates for ATP- and auxilin-dependent, Hsc70-catalyzed uncoating. Finally, we show that this uncoating reaction proceeds normally when the coats contain recombinant heavy chains truncated C-terminal to the QLMLT motif, but very inefficiently when the motif is absent. Thus, the QLMLT motif is required for Hsc-70-facilitated uncoating, consistent with the proposal that this sequence is a specific target of the chaperone.  相似文献   

10.
The nef gene of human and simian immunodeficiency viruses is critical for AIDS pathogenesis. Its function in vivo is unknown, but in vitro natural isolates of Nef down-regulate expression of the cell surface CD4 molecule, a component of the T cell antigen receptor and the viral receptor, by accelerating its endocytosis. We have used chimeric proteins comprised of the natural HIV-1 NA7 Nef fused to a strongly fluorescing mutant of green fluorescent protein (GFP) to correlate Nef function with intracellular localization in human CD4-positive Jurkat T cells. The NA7-GFP fusion protein co-localizes with components of the clathrin coat, including clathrin and the beta-subunit of the AP-2 adaptor protein complex, at discrete locations that are consistent with the normal cellular distribution of clathrin coats at the plasma membrane. The NA7-GFP protein is also found in the perinuclear region of the cell, which is likely to reflect the Golgi apparatus. Evidence from a CD4-negative fibroblast cell line indicates that co-localization of NA7-GFP with components of the clathrin coat does not require expression of the CD4 molecule. Analysis of a large panel of chimeric molecules containing mutant Nef moieties demonstrated that the N-terminal membrane targeting signal cooperates with additional element(s) in the disordered loops in the Nef molecule to co-localize the Nef protein with AP-2 adaptor complexes at the cell margin. This localization of NA7-GFP correlates with, but is not sufficient for, down-regulation of surface CD4 and at least one additional function of Nef is required. In T cells co-expressing CD4 and NA7-GFP, CD4 at the cell surface is redistributed into a discrete pattern that co-localizes with that of NA7-GFP. Our observations place NA7-GFP in physical proximity to AP-2-containing clathrin coat at the plasma membrane and imply that Nef interacts, either directly or indirectly, with a component of the AP-2-containing coat at this location. This evidence supports a model whereby Nef recruits CD4 to the endocytic machinery via AP-2-containing clathrin coats at the plasma membrane.  相似文献   

11.
Two models have been proposed to describe the folding pathways of proteins. The framework model assumes the initial formation of the secondary structures whereas the hydrophobic collapse model supposes their formation after the collapse of backbone structures. To differentiate between these models for real proteins, we have developed a novel CD spectrometer that enables us to observe the submillisecond time frame of protein folding and have characterized the timing of secondary structure formation in the folding process of cytochrome c (cyt c). We found that approximately 20% of the native helical content was organized in the first phase of folding, which is completed within milliseconds. Furthermore, we suggest the presence of a second intermediate, which has alpha-helical content resembling that of the molten globule state. Our results indicate that many of the alpha-helices are organized after collapse in the folding mechanism of cyt c.  相似文献   

12.
Uncoating of clathrin-coated vesicles requires the J-domain protein auxilin for targeting hsc70 to the clathrin coats and for stimulating the hsc70 ATPase activity. This results in the release of hsc70-complexed clathrin triskelia and concomitant dissociation of the coat. To understand the complex role of auxilin in uncoating and clathrin assembly in more detail, we analyzed the molecular organization of its clathrin-binding domain (amino acids 547-813). CD spectroscopy of auxilin fragments revealed that the clathrin-binding domain is almost completely disordered in solution. By systematic mapping using synthetic peptides and by site-directed mutagenesis, we identified short peptide sequences involved in clathrin heavy chain and AP-2 binding and evaluated their significance for the function of auxilin. Some of the binding determinants, including those containing sequences 674DPF and 636WDW, showed dual specificity for both clathrin and AP-2. In contrast, the two DLL motifs within the clathrin-binding domain were exclusively involved in clathrin binding. Surprisingly, they interacted not only with the N-terminal domain of the heavy chain, but also with the distal domain. Moreover, both DLL peptides proved to be essential for clathrin assembly and uncoating. In addition, we found that the motif 726NWQ is required for efficient clathrin assembly activity. Auxilin shares a number of protein-protein interaction motifs with other endocytic proteins, including AP180. We demonstrate that AP180 and auxilin compete for binding to the alpha-ear domain of AP-2. Like AP180, auxilin also directly interacts with the ear domain of beta-adaptin. On the basis of our data, we propose a refined model for the uncoating mechanism of clathrin-coated vesicles.  相似文献   

13.
Many plasma membrane proteins destined for endocytosis are concentrated into clathrin-coated pits through the recognition of a tyrosine-based motif in their cytosolic domains by an adaptor (AP-2) complex. The mu2 subunit of isolated AP-2 complexes binds specifically, but rather weakly, to proteins bearing the tyrosine-based signal. We now demonstrate, using peptides with a photoreactive probe, that this binding is strengthened significantly when the AP-2 complex is present in clathrin coats, indicating that there is cooperativity between receptor-AP-2 interactions and coat formation. Phosphoinositides with a phosphate at the D-3 position of the inositol ring, but not other isomers, also increase the affinity of the AP-2 complex for the tyrosine-based motif. AP-2 is the first protein known (in any context) to interact with phosphatidylinositol 3-phosphate. Our findings indicate that receptor recruitment can be coupled to clathrin coat assembly and suggest a mechanism for regulation of membrane traffic by lipid products of phosphoinositide 3-kinases.  相似文献   

14.
COPI (coat protein I) and the clathrin-AP-2 (adaptor protein 2) complex are well-characterized coat proteins, but a component that is common to these two coats has not been identified. The GTPase-activating protein (GAP) for ADP-ribosylation factor 1 (ARF1), ARFGAP1, is a known component of the COPI complex. Here, we show that distinct regions of ARFGAP1 interact with AP-2 and coatomer (components of the COPI complex). Selectively disrupting the interaction of ARFGAP1 with either of these two coat proteins leads to selective inhibition in the corresponding transport pathway. The role of ARFGAP1 in AP-2-regulated endocytosis has mechanistic parallels with its roles in COPI transport, as both its GAP activity and coat function contribute to promoting AP-2 transport.  相似文献   

15.
《The Journal of cell biology》1983,97(5):1339-1347
A protein activity has been identified in extracts of coated vesicles that enables purified clathrin triskelions to reassemble in vitro into coat structures of uniform size. Coats formed in the presence of this preparation, regardless of the buffer system employed, are uniform in size with a mean diameter of 78 nm (+/- 5 nm SD) and a sedimentation coefficient (S20,w) of approximately 250S. Analysis of the reassembled coats on dodecyl sulfate acrylamide gels reveals that they have specifically incorporated three polypeptides from the preparation: those of Mr congruent to 52,000, 100,000, and 110,000. The 52,000-, 100,000-, and 110,000-mol-wt polypeptides are incorporated in molar ratios of 0.85, 1.11, and 0.26, respectively, per three clathrin monomers (equivalent to one triskelion). We therefore designate these as assembly polypeptides (AP). In contrast, coats formed from clathrin alone, under permissive buffer conditions, are larger (400S), more heterogeneous in size (101 nm +/- 15 nm SD), and are composed only of clathrin and its associated light chains. These biochemical and biophysical characteristics distinguish AP-reassembled coats from coats formed by triskelions alone. AP-reassembled coats can be isolated, dissociated, then reassembled in the absence of any other factors. This recycling indicates that all the information needed for reassembly is present in the coat-incorporated polypeptides themselves. Reassembly is stoichiometric and saturable with respect to both clathrin and AP concentration. In the presence of AP, significant coat reassembly occurs at clathrin concentrations as low as 0.06 mg/ml. AP-mediated reassembly proceeds at 4 degrees, 22 degrees, and 37 degrees C. Coat formation also proceeds efficiently at intracellular pH values (7.2- 7.5) in the presence of AP. In its absence, reassembly does not occur at all above pH 6.7. In summary, AP promotes clathrin reassembly into coat structures of uniform size and distinctive composition under physiologically relevant salt, temperature, and pH conditions. In addition, the close similarity in size between AP-reassembled coats in vitro and coated membranes in the Golgi region in vivo raises the possibility that AP in the cell may be associated with this subpopulation of coat structures.  相似文献   

16.
Clathrin domains involved in recognition by assembly protein AP-2   总被引:5,自引:0,他引:5  
The domains on clathrin responsible for interaction with the plasma membrane-associated assembly protein AP-2 have been studied using a novel cage binding assay. AP-2 bound to pure clathrin cages but not to coat structures already containing AP that had been prepared by coassembly. Binding to preassembled cages also occurred in the presence of elevated Tris-HCl concentrations (greater than or equal to 200 mM) which block AP-2 interactions with free clathrin. AP-2 interactions with assembled cages could also be distinguished from AP-2 binding to clathrin trimers by sodium tripolyphosphate (NaPPPi), which binds to the alpha subunit of AP-2 (Beck, K., and Keen, J. H. (1991) J. Biol. Chem. 266, 4442-4447). At concentrations of 1-5 mM, NaPPPi blocked clathrin-triskelion binding; in contrast, interactions with cages persisted in the presence of 25 mM NaPPPi. To begin to identify the region(s) of the clathrin molecule important in recognition by AP-2, clathrin cages were proteolyzed to remove heavy chain terminal domains and portions of the distal leg as well as all of the light chains. AP-2 bound to these "clipped cages"; however, unlike the interaction with native cages, binding of AP-2 to clipped cages was sensitive to the lower concentrations of both Tris-HCl and NaPPPi which disrupt interactions of AP-2 with clathrin trimers. Reconstitution of the clipped cages with clathrin light chains did not restore resistance of AP-2 binding to Tris-HCl. We conclude that one binding site for AP-2 resides on the hub and/or proximal part of the clathrin triskelion whereas a second site is likely to involve the terminal domain and/or distal leg; the second site is manifested only in the assembled lattice structure. We suggest that these two distinct binding interactions may be mediated by the two unique large subunits within the AP-2 complex, acting sequentially during assembly.  相似文献   

17.
The clathrin triskelion self-assembles into a polyhedral coat surrounding membrane vesicles that sort receptor cargo to the endocytic pathway. A triskelion comprises three clathrin heavy chains joined at their C-termini, extending into proximal and distal leg segments ending in a globular N-terminal domain. In the clathrin coat, leg segments entwine into parallel and anti-parallel interactions. Here we define the contributions of segmental interactions to the clathrin assembly reaction and measure the strength of their interactions. Proximal and distal leg segments were found to lack sufficient affinity to form stable homo- or heterodimers under assembly conditions. However, chimeric constructs of proximal or distal leg segments, trimerized by replacement of the clathrin trimerization domain with that of the invariant chain protein, were able to self-assemble in reversible reactions. Thus clathrin assembly occurs because weak leg segment affinities are coordinated through trimerization, sharing a dependence on multiple weak interactions with other biopolymers. Such polymerization is sensitive to small environmental changes and is therefore compatible with cellular regulation of assembly, disassembly and curvature during formation of clathrin-coated vesicles.  相似文献   

18.
AP-2-containing clathrin coats assemble on mature lysosomes   总被引:5,自引:0,他引:5       下载免费PDF全文
《The Journal of cell biology》1996,135(6):1801-1814
Coat proteins appear to play a general role in intracellular protein trafficking by coordinating a membrane budding event with cargo selection. Here we show that the AP-2 adaptor, a clathrin-associated coat-protein complex that nucleates clathrin-coated vesicle formation at the cell surface, can also initiate the assembly of normal polyhedral clathrin coats on dense lysosomes under physiological conditions in vitro. Clathrin coat formation on lysosomes is temperature dependent, displays an absolute requirement for ATP, and occurs in both semi-intact cells and on purified lysosomes, suggesting that clathrin-coated vesicles might regulate retrograde membrane traffic out of the lysosomal compartment.  相似文献   

19.
The secondary structure of bacterio-opsin (BO), the retinal free protein-component of bacteriorhodopsin (BR), has been determined by Raman spectroscopy. Additional circular dichroism (CD) measurements have revealed only negligible conformational differences between BO in apomembranes and BR in purple membranes. Therefore, the secondary structure of BR was derived from the Raman data of BO. The protein conformation was determined to consist of 72-82% helices, 2-11% beta-strands, and 11-17% beta-turns. Only about half of the helical structures correspond to alpha 1-helices, the other half possess non-alpha 1-helical structures. According to the analysis of the Raman data, the derived secondary structure of BR was obtained with high reliability for all structure classes which can be distinguished by this method within the given uncertainty range. This is a remarkable difference from recently published secondary structural data derived from CD measurements where the helix content was reported to be between 50 and 80%. The inherent experimental and methodological uncertainties of the CD-technique leading to such a range of variation are critically discussed in comparison to the method of Raman spectroscopy. The combined application of Raman and CD spectroscopy, as performed here, is demonstrated to be a substantial improvement in the secondary structure determination of retinal-containing membrane proteins. On the basis of our results, some of the recently proposed structural models of BR with a beta-strand content of more than 11% can be ruled out.  相似文献   

20.
C J Smith  N Grigorieff    B M Pearse 《The EMBO journal》1998,17(17):4943-4953
We present a map at 21 A resolution of clathrin assembled into cages with the endocytic adaptor complex, AP-2. The map was obtained by cryo-electron microscopy and single-particle reconstruction. It reveals details of the packing of entire clathrin molecules as they interact to form a cage with two nested polyhedral layers. The proximal domains of each triskelion leg depart from a cage vertex in a skewed orientation, forming a slightly twisted bundle with three other leg domains. Thus, each triskelion contributes to two connecting edges of the polyhedral cage. The clathrin heavy chains continue inwards under the vertices with local 3-fold symmetry, the terminal domains contributing to 'hook-like' features which form an intermediate network making possible contacts with the surface presented by the inner adaptor shell. A node of density projecting inwards from the vertex may correspond to the C-termini of clathrin heavy chains which form a protrusion on free triskelions at the vertex. The inter-subunit interactions visible in this map provide a structural basis for considering the assembly of clathrin coats on a membrane and show the contacts which will need to be disrupted during disassembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号