首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basis for the reduced affinity of beta T- and gamma T-thrombin for hirudin   总被引:1,自引:0,他引:1  
S R Stone  J Hofsteenge 《Biochemistry》1991,30(16):3950-3955
Partial proteolysis of human alpha-thrombin by trypsin results in the formation of beta T-thrombin and gamma T-thrombin which have a reduced affinity for the inhibitor hirudin and the cell-surface cofactor thrombomodulin as well as reduced activity with fibrinogen. The basis of the reduction in affinity of these thrombin derivatives for hirudin has been investigated by examining their kinetics of interaction with a number of hirudin mutants differing in their C-terminal charge properties as well as with a truncated form of hirudin. The results indicate that the reduced affinity of beta T-thrombin for hirudin is most likely due to a decrease in the strength of nonionic interactions between thrombin and the C-terminal region of hirudin. No decrease in the strength of ionic interactions was observed with beta T-thrombin. In contrast, the reduced affinity of gamma T-thrombin was due to a decrease in the strength of both ionic and nonionic interactions. The N-terminal core region of hirudin, which interacts predominantly with the active-site cleft of thrombin, exhibited similar affinities for alpha-, beta T-, and gamma T-thrombin, indicating that thrombin-hirudin interactions within the active site are largely preserved in beta T- and gamma T-thrombin.  相似文献   

2.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

3.
The kinetic mechanism of the inhibition of alpha-thrombin by hirudin was analyzed using the hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Previously, these fragments have been shown to interact with alpha-thrombin at distinct sites inhibiting thrombin-mediated clot formation. Binding to the active site the N-terminal fragment hirudin(1-47) competitively inhibits hydrolysis of the substrates Tos-Gly-Pro-Arg-NH-Mec (Tos, tosyl; NH-Mec, 4-methylcoumaryl-7-amide) and fibrinogen with Ki values of 420 +/- 18 nM and 460 +/- 25 nM, respectively. Interacting with the anion-binding site of alpha-thrombin the C-terminal fragment competitively inhibits the hydrolysis of fibrinogen with a Ki of 760 +/- 40 nM. It was found, however, that this fragment acts as a hyperbolic uncompetitive inhibitor with respect to the hydrolysis of the peptide-NH-Mec substrate. According to the Botts-Morales scheme for enzyme inhibition, the parameters Ki = 710 +/- 38 nM, K'i = 348 +/- 22 nM, as well as alpha = beta = 0.49 of thrombin inhibition by the C-terminal fragment hirudin(45-65), were obtained. The results are discussed in terms of the interaction of hirudin and thrombin.  相似文献   

4.
Use of fragments of hirudin to investigate thrombin-hirudin interaction   总被引:1,自引:0,他引:1  
Site-directed mutagenesis was used to create hirudin in which Asn52 was replaced by methionine. Cyanogen bromide cleavage at this unique methionine resulted in two fragments. These fragments have been used to study the kinetic mechanism of the inhibition of thrombin by hirudin and to identify areas of the two molecules which interact with each other. The binding of the C-terminal fragment (residues 53-65) to thrombin resulted in a decrease in the Michaelis constant for the substrate D-phenylalanylpipecolylarginyl-p-nitroanilide (DPhe-Pip-Arg-NH-Ph). The N-terminal fragment (residues 1-52) was a competitive inhibitor of thrombin. There was a small amount of cooperativity in the binding of the two fragments. Whereas hirudin and its C-terminal fragment protected alpha-thrombin against cleavage by trypsin, the N-terminal fragment did not. Hirudin and the N-terminal fragment completely prevented the cleavage of alpha-thrombin by pancreatic elastase while the C-terminal fragment afforded a lesser degree of protection. The results of these experiments with trypsin and elastase are discussed in terms of interaction areas on thrombin and hirudin.  相似文献   

5.
Heparin cofactor II (HCII) is a glycoprotein in human plasma that inhibits thrombin and chymotrypsin. Inhibition occurs when the protease attacks the reactive site peptide bond in HCII (Leu444-Ser445) and becomes trapped as a covalent 1:1 complex. Dermatan sulfate and heparin increase the rate of inhibition of thrombin, but not of chymotrypsin, greater than 1000-fold. The N-terminal portion of HCII contains two acidic repeats (Glu56-Asp-Asp-Asp-Tyr-Leu-Asp and Glu69-Asp-Asp-Asp-Tyr-Ile-Asp) that may bind to anion-binding exosite I of thrombin to facilitate covalent complex formation. To examine the importance of the acidic domain, we have constructed a series of 5' deletions in the HCII cDNA and expressed the recombinant HCII (rHCII) in Escherichia coli. Apparent second-order rate constants (k2) for inhibition of alpha-thrombin and chymotrypsin by each variant were determined. Deletion of amino acid residues 1-74 had no effect on the rate of inhibition of alpha-thrombin or chymotrypsin in the absence of a glycosaminoglycan. Similarly, the rate of inhibition of alpha-thrombin in the presence of a glycosaminoglycan was unaffected by deletion of residues 1-52. However, deletion of residues 1-67 (first acidic repeat) or 1-74 (first and second acidic repeats) greatly decreased the rate of inhibition of alpha-thrombin in the presence of heparin, dermatan sulfate, or a dermatan sulfate hexasaccharide that comprises the minimum high-affinity binding site for HCII. Deletion of one or both of the acidic repeats increased the apparent affinity of rHCII for heparin-Sepharose, suggesting that the acidic domain may interact with the glycosaminoglycan-binding site of native rHCII. The stimulatory effect of glycosaminoglycans on native rHCII was decreased by a C-terminal hirudin peptide which binds to anion-binding exosite I of alpha-thrombin. Furthermore, the ability of native rHCII to inhibit gamma-thrombin, which lacks the binding site for hirudin, was stimulated weakly by glycosaminoglycans. These results support a model in which the stimulatory effect of glycosaminoglycans on the inhibition of alpha-thrombin is mediated, in part, by the N-terminal acidic domain of HCII.  相似文献   

6.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(4):1168-1172
The kinetics of the inhibition of human alpha-thrombin by recombinant hirudin have been studied over the pH range from 6 to 10. The association rate constant for hirudin did not vary significantly over this pH range. The dissociation constant of hirudin depended on the ionization state of groups with pKa values of about 7.1, 8.4, and 9.2. Optimal binding of hirudin to thrombin occurred when the groups with pKa values of 8.4 and 9.0 were protonated and the other group with a pKa of 7.1 was deprotonated. The pH kinetics of genetically engineered forms of hirudin were examined in an attempt to assign these pKa values to particular groups. By using this approach, it was possible to show that protonation His51 and ionization of acidic residues in the C-terminal region of hirudin were not responsible for the observed pKa values. In contrast, the pKa value of 8.4 was not observed when a form of hirudin with an acetylated alpha-amino group was examined, and, thus, this pKa value was assigned to the alpha-amino group of hirudin. The requirement for this group to be protonated for optimal binding to thrombin is discussed in terms of the crystal structure of the thrombin-hirudin complex. Examination of this structure allowed the other pKa values of 7.1 and 9.2 to be tentatively attributed to His57 and the alpha-amino group of Ile16 of thrombin.  相似文献   

7.
To elucidate the thrombin domains required for high-affinity binding and platelet activation, the platelet binding properties of thrombin and two mutant thrombins, thrombin Quick I and Quick II, were compared to their agonist effects in elevating intraplatelet [Ca2+]. In Quick I, a mutation within the fibrinogen binding groove results in decreased clotting and platelet aggregating activities, whereas in Quick II, a mutation in the primary substrate binding pocket abolishes both activities. Dysthrombin binding was decreased compared to thrombin. The fibrinogen binding groove appeared more important than the primary substrate pocket for high-affinity binding since Quick I showed drastically reduced, and Quick II only slightly reduced, binding affinity (Kd approximately 200 and approximately 10 nM, respectively). The deduced interaction of thrombin with its high-affinity binding site indicated that the thrombin catalytic site is directed toward the platelet surface and therefore, when bound, is proteolytically inactive. Quick I (0.5-5 nM) elicited intraplatelet [Ca2+] fluxes at concentrations where high-affinity binding was undetectable. Saturation of high-affinity binding sites with active-site-modified thrombin did not affect thrombin-induced (0.5 nM) or Quick I-induced (5 nM) responses. In contrast, addition of D-Phe-Pro-Arg chloromethyl ketone (FPRCK) subsequent to thrombin or Quick I stimulation of platelets abolished agonist-induced responses. Since Quick I was only 10-17% as effective as thrombin in increasing intraplatelet [Ca2+], our data support a model in which thrombin acts enzymatically on a platelet membrane "substrate", through an interaction mediated in part by the fibrinogen binding groove of thrombin. This conclusion is consistent with the inhibition observed with high concentrations (greater than 100 nM) of Quick II and FPRCK-modified thrombin (FPR-thrombin) in platelets stimulated with low concentrations of thrombin (less than 0.5 nM) or Quick I (less than 2 nM), consistent with inhibition by substrate depletion. In contrast, concentrations of FPR-thrombin or Quick II (less than 100 nM), which saturated predominantly the high-affinity binding sites, enhanced the platelet responses induced by thrombin (less than 0.5 nM). Thus, occupation of the high-affinity sites with inactive thrombin increased the concentration of active thrombin available for substrate interaction. Quick I-induced responses were not enhanced, consistent with its inability to interact with the high-affinity site. Since thrombin bound to the high-affinity site is proteolytically inactive, we hypothesize that the thrombin high-affinity binding site on platelets functions to alter thrombin activity and platelet activation.  相似文献   

8.
S R Stone  P J Braun  J Hofsteenge 《Biochemistry》1987,26(15):4617-4624
The contributions of various regions of human alpha-thrombin to the formation of the tight complex with hirudin have been assessed by using derivatives of thrombin. alpha-Thrombin in which the active-site serine was modified with diisopropyl fluorophosphate was able to bind hirudin, but its affinity for hirudin was decreased by 10(3)-fold compared to unmodified alpha-thrombin. Modification of the active-site histidine with D-Phe-Pro-Arg-CH2Cl resulted in a form of thrombin with a 10(6)-fold reduced affinity for hirudin. gamma-Thrombin is produced by proteolytic cleavage of alpha-thrombin in two surface loops corresponding to residues 65-83 and 146-150 in alpha-chymotrypsin [Berliner, L. J. (1984) Mol. Cell. Biochem. 61, 159-172; Birktoft, J. J., & Blow, D. M. (1972) J. Mol. Biol. 68, 187-240]. The gamma-thrombin-hirudin complex had a dissociation constant that was 10(6)-fold higher than that of alpha-thrombin. Treatment of alpha-thrombin with pancreatic elastase resulted in a form of thrombin only cleaved in the loop corresponding to residues 146-150 in alpha-chymotrypsin, and this form of thrombin had only a slightly reduced affinity for hirudin. By using limited proteolysis with trypsin, it was possible to isolate beta-thrombin which contained a single cleavage in the loop corresponding to residues 65-83 in alpha-chymotrypsin. This form of thrombin had a 100-fold decrease in affinity for hirudin. Kinetic analysis of the binding of hirudin to beta-thrombin indicated that the 100-fold decrease in affinity was predominantly due to a decrease in the rate of association of the two molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Haemadin is a 57-amino acid thrombin inhibitor from the land-living leech Haemadipsa sylvestris, whose structure has recently been determined in complex with human alpha-thrombin. Here we communicate the effect of ionic strength on the kinetics of the inhibition of human alpha-thrombin by haemadin, by using thrombin mutants modified in exosite II. Data analysis has allowed both the ionic and nonionic binding contributions to be ascertained, with the nonionic component being virtually the same for all of the thrombins that have been examined, while the ionic binding energy contributions varied from molecule to molecule. In the case of the native human alpha-thrombin-haemadin complex, ionic interactions contribute -17 kJ/mol to the Gibbs free energy of binding, this being the equivalent of up to six salt bridges. These salt bridges make up 20% of the total binding energy at zero ionic strength, and this has been attributed to the C-terminal tail alone. In addition, the contributions of the N-terminal and C-terminal regions of haemadin to its tight binding have been ascertained by using derivatives of both haemadin and thrombin. Limited proteolysis using formic acid produced haemadin cleaved between residues 40 and 41, removing the majority of the C-terminal tail. This truncated haemadin displayed a 20000-fold reduced affinity for thrombin, and was no longer a tight binding inhibitor. A form of thrombin in which the active site serine has been blocked by diisopropyl fluorophosphate binds to haemadin, but with a 72000-fold reduced affinity, indicating that the N-terminus is more important than the C-terminus for strong binding.  相似文献   

10.
11.
Anticoagulant activity of synthetic hirudin peptides   总被引:4,自引:0,他引:4  
Synthetic peptides based on the COOH-terminal 21 residues of hirudin were prepared in order to 1) evaluate the role of this segment in hirudin action toward thrombin, 2) define the shortest peptide derivative with anticoagulant activity, and 3) investigate the role of tyrosine sulfation in the peptides' inhibitory activities. A hirudin derivative of 20 amino acids, Hir45-64 (derived from residues 45-64 of the hirudin polypeptide), was found to effect a dose-dependent increase in the activated partial thromboplastin time (APTT) of normal human plasma but to have no measurable inhibitory activity toward thrombin cleavage of a tripeptidyl p-nitroanilide substrate. Anticoagulant activity in hirudin derivatives was comparable in peptides of 20, 16, and 12 residues truncated from the NH2 terminus. Additional truncated peptides prepared by synthesis and carboxypeptidase treatment reveal that the minimal sequence of a hirudin peptide fragment with maximal anticoagulant activity is contained within the sequence: NH2-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-COOH. The 12-residue derivative thus identified was reacted with dicyclohexylcarbodiimide in the presence of sulfuric acid to yield a Tyr-sulfated peptide, S-Hir53-64. By comparison to unsulfated peptide, S-Hir53-64 was found to contain a specific inhibitory activity enhanced by one order of magnitude toward increase in APTT and to effect a dose-dependent increase in thrombin time of normal human plasma to yield a 4-fold increase in thrombin time with 2.5 micrograms/ml peptide using 0.8 units/ml alpha-thrombin. Comparison of S-Hir53-64 to hirudin in thrombin time and APTT assays reveals a 50-fold difference in molar specific activities toward inhibition of thrombin. Comparison of antithrombin activities of S-Hir53-64 using a variety of animal thrombins demonstrates greatest inhibitory activity toward murine, rat, and human enzymes and a 10-fold reduced activity toward bovine thrombin.  相似文献   

12.
In order to define structural regions in thrombin that interact with hirudin, the N alpha-dinitrofluorobenzyl analogue of an undecapeptide was synthesized corresponding to residues 54-64 of hirudin [GDFEEIPEEY(O35SO3)L (DNFB-[35S]Hir54-64)]. DNFB-[35S]Hir54-64 was reacted at a 10-fold molar excess with human alpha-thrombin in phosphate-buffered saline at pH 7.4 and 23 degrees C for 18 h. Autoradiographs of the product in reducing SDS-polyacrylamide gels revealed a single 35S-labeled band of Mr approximately 32,500. The labeled product was coincident with a band on Coomassie Blue stained gels migrating slightly above an unlabeled thrombin band at Mr approximately 31,000. Incorporation of the 35S affinity reagent peptide was found markedly reduced when reaction with thrombin was performed in the presence of 5- and 20-fold molar excesses of unlabeled hirudin peptide, showing that a specific site was involved in complex formation. The human alpha-thrombin-DNFB-Hir54-64 complex was reduced, S-carboxymethylated, and treated with pepsin. Peptic fragments were separated by reverse-phase HPLC revealing two major peaks containing absorbance at 310 nm. Automated Edman degradation of the peptide fragments allowed identification of Lys-149 of human thrombin as the major site of DNFB-Hir54-64 derivatization. These data suggest that the anionic C-terminal tail of hirudin interacts with an anion-binding exosite in human thrombin removed 18-20 A from the catalytic apparatus.  相似文献   

13.
Bothrojaracin, a 27-kDa C-type lectin from Bothrops jararaca venom, is a selective and potent thrombin inhibitor (K(d) = 0.6 nM) which interacts with the two thrombin anion-binding exosites (I and II) but not with its catalytic site. In the present study, we analyzed the allosteric effects produced in the catalytic site by bothrojaracin binding to thrombin exosites. Opposite effects were observed with alpha-thrombin, which possesses both exosites I and II, and with gamma-thrombin, which lacks exosite I. On the one hand, bothrojaracin altered both kinetic parameters K(m) and k(cat) of alpha-thrombin for small synthetic substrates, resulting in an increased efficiency of alpha-thrombin catalytic activity. This effect was similar to that produced by hirugen, a peptide based on the C-terminal hirudin sequence (residues 54-65) which interacts exclusively with exosite I. On the other hand, bothrojaracin decreased the amidolytic activity of gamma-thrombin toward chromogenic substrates, although this effect was observed with higher concentrations of bothrojaracin than those used with alpha-thrombin. In agreement with these observaions, bothrojaracin produced opposite effects on the fluorescence intensity of alpha- and gamma-thrombin derivatives labeled at the active site with fluorescein-Phe-Pro-Arg-chloromethylketone. These observations support the conclusion that bothrojaracin binding to thrombin produces two different structural changes in its active site, depending on whether it interacts exclusively with exosite II, as seen with gamma-thrombin, or with exosite I (or both I and II) as observed with alpha-thrombin. The ability of bothrojaracin to evoke distinct modifications in the thrombin catalytic site environment when interacting with exosites I and II make this molecule an interesting tool for the study of allosteric changes in the thrombin molecule.  相似文献   

14.
Recombinant hirudin variant-2(Lys47), was found to be a competitive inhibitor of human alpha-thrombin with respect to peptidyl p-nitroanilide substrates. These results contrast with those of Degryse and coworkers that suggest that recombinant hirudin variant-2(Lys47) inhibited thrombin by a noncompetitive mechanism [Degryse et al. (1989) Protein Engng, 2, 459-465]. gamma-Thrombin, which can arise from alpha-thrombin by autolysis, was shown to have an affinity for recombinant hirudin variant-2(Lys47) that was four orders of magnitude lower than that of alpha-thrombin. It was demonstrated that the apparent noncompetitive mechanism observed previously was probably caused by a contamination of the thrombin preparation by gamma-thrombin. Comparison of the inhibition of alpha-thrombin by recombinant hirudins variant-2(Lys47) and variant-1, which differ from one another in eight out of 65 amino acids, indicated that the two variants have essentially the same kinetic parameters.  相似文献   

15.
The serine proteinase alpha-thrombin plays a pivotal role in the regulation of blood fluidity, and therefore constitutes a primary target in the treatment of various haemostatic disorders. Haemadin is a slow tight- binding thrombin inhibitor from the land-living leech Haemadipsa sylvestris. Here we present the 3.1 A crystal structure of the human alpha-thrombin- haemadin complex. The N-terminal segment of haemadin binds to the active site of thrombin, forming a parallel beta-strand with residues Ser214-Gly216 of the proteinase. This mode of binding is similar to that observed in another leech-derived inhibitor, hirudin. In contrast to hirudin, however, the markedly acidic C-terminal peptide of haemadin does not bind the fibrinogen-recognition exosite, but interacts with the heparin-binding exosite of thrombin. Thus, haemadin binds to thrombin according to a novel mechanism, despite an overall structural similarity with hirudin. Haemadin inhibits both free and thrombomodulin-bound alpha-thrombin, but not intermediate activation forms such as meizothrombin. This specific anticoagulant ability of haemadin makes it an ideal candidate for an antithrombotic agent, as well as a starting point for the design of novel antithrombotics.  相似文献   

16.
Heparin cofactor II (HCII) is a plasma serine protease inhibitor whose ability to inhibit alpha-thrombin is accelerated by a variety of sulfated polysaccharides in addition to heparin and dermatan sulfate. Previous investigations have indicated that calcium spirulan (Ca-SP), a novel sulfated polysaccharide, enhanced the rate of inhibition of alpha-thrombin by HCII. In this study, we investigated the mechanism of the activation of HCII by Ca-SP. Interestingly, in the presence of Ca-SP, an N-terminal deletion mutant of HCII (rHCII-Delta74) inhibited alpha-thrombin, as native recombinant HCII (native rHCII) did. The second-order rate constant for the inhibition of alpha-thrombin by rHCII-Delta74 was 2.0 x 10(8) M(-1) min(-1) in the presence of 50 microgram/ml Ca-SP and 10, 000-fold higher than in the absence of Ca-SP. The rates of native rHCII and rHCII-Delta74 for the inhibition of gamma-thrombin were increased only 80- and 120-fold, respectively. Our results suggested that the anion-binding exosite I of alpha-thrombin was essential for the rapid inhibition reaction by HCII in the presence of Ca-SP and that the N-terminal acidic domain of HCII was not required. Therefore, we proposed a mechanism by which HCII was activated allosterically by Ca-SP and could interact with the anion-binding exosite I of thrombin not through the N-terminal acidic domain of HCII. The Arg(103) --> Leu mutant bound to Ca-SP-Toyopearl with normal affinity and inhibited alpha-thrombin in a manner similar to native rHCII. These results indicate that Arg(103) in HCII molecule is not critical for the interaction with Ca-SP.  相似文献   

17.
A novel class of synthetic, multisite-directed thrombin inhibitors, known as hirunorms, has been described recently. These compounds were designed to mimic the binding mode of hirudin, and they have been proven to be very strong and selective thrombin inhibitors. Here we report the crystal structure of the complex formed by human alpha-thrombin and hirunorm V, a 26-residue polypeptide containing non-natural amino acids, determined at 2.1 A resolution and refined to an R-factor of 0.176. The structure reveals that the inhibitor binding mode is distinctive of a true hirudin mimetic, and it highlights the molecular basis of the high inhibitory potency (Ki is in the picomolar range) and the strong selectivity of hirunorm V. Hirunorm V interacts through the N-terminal tetrapeptide with the thrombin active site in a nonsubstrate mode; at the same time, this inhibitor specifically binds through the C-terminal segment to the fibrinogen recognition exosite. The backbone of the N-terminal tetrapeptide Chg1"-Val2"-2-Nal3"-Thr4" (Chg, cyclohexyl-glycine; 2-Nal, beta-(2-naphthyl)-alanine) forms a short beta-strand parallel to thrombin main-chain residues Ser214-Gly219. The Chg1" side chain fills the S2 subsite, Val2" is located at the entrance of S1, whereas 2-Nal3" side chain occupies the aryl-binding site. Such backbone orientation is very close to that observed for the N-terminal residues of hirudin, and it is similar to that of the synthetic retro-binding peptide BMS-183507, but it is opposite to the proposed binding mode of fibrinogen and of small synthetic substrates. Hirunorm V C-terminal segment binds to the fibrinogen recognition exosite, similarly to what observed for hirudin C-termninal tail and related compounds. The linker polypeptide segment connecting hirunorm V N-and C-terminal regions is not observable in the electron density maps. The crystallographic analysis proves the correctness of the design and it provides a compelling proof on the interaction mechanism for this novel class of high potency multisite-directed synthetic thrombin inhibitors.  相似文献   

18.
A protease nexin released by activated platelets forms stable complexes with alpha-thrombin. Active-site-blocked thrombin does not form the stable complex, but it inhibits formation of the stable complex by active alpha-thrombin. gamma-Thrombin, which has a damaged substrate recognition site (the anion-binding exosite), did not form the complex and did not inhibit formation of the stable complex by alpha-thrombin. Complex formation was inhibited by the C-terminal dodecapeptide of hirudin, which has been shown to bind to the anion-binding exosite. A monoclonal antibody that blocks reactions of thrombin that involve the anion-binding exosite also inhibited formation of a stable complex of alpha-thrombin and the platelet-derived protease nexin. It is concluded that the anion-binding exosite of thrombin, a site that confers a high degree of specificity for substrates with a complementary site, binds to the platelet nexin prior to reaction of the catalytic site with the serpin.  相似文献   

19.
Thrombin exists in two allosteric forms, slow (S) and fast (F), that recognize natural substrates and inhibitors with significantly different affinities. Because under physiologic conditions the two forms are almost equally populated, investigation of thrombin function must address the contribution from the S and F forms and the molecular origin of their differential recognition of ligands. Using a panel of 79 Ala mutants, we have mapped for the first time the epitopes of thrombin recognizing a macromolecular ligand, hirudin, in the S and F forms. Hirudin binding is a relevant model for the interaction of thrombin with fibrinogen and PAR1 and is likewise influenced by the allosteric S-->F transition. The epitopes are nearly identical and encompass two hot spots, one in exosite I and the other in the Na+ site at the opposite end of the protein. The higher affinity of the F form is due to the preferential interaction of hirudin with Lys-36, Leu-65, Thr-74, and Arg-75 in exosite I; Gly-193 in the oxyanion hole; and Asp-221 and Asp-222 in the Na+ site. Remarkably, no correlation is found between the energetic and structural involvements of thrombin residues in hirudin recognition, which invites caution in the analysis of protein-protein interactions in general.  相似文献   

20.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号