首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dimorphic pattern of growth hormone (GH) secretion and somatic growth in male and female mammals is attributable to the gonadal steroids. Whether these hormones mediate their effects solely on hypothalamic neurons, on somatotropes or on both to evoke the gender-specific GH secretory patterns has not been fully elucidated. The purpose of this study was to determine the effects of 17beta-estradiol, testosterone and its metabolites on release of GH, GH-releasing hormone (GHRH) and somatostatin (SRIF) from bovine anterior pituitary cells and hypothalamic slices in an in vitro perifusion system. Physiological concentrations of testosterone and estradiol perifused directly to anterior pituitary cells did not affect GH releases; whereas, dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol increased GH. Perifusion of testosterone at a pulsatile rate, and its metabolites and estradiol at a constant rate to hypothalamic slices in series with anterior pituitary cells increased GH release. The androgenic hormones increased GHRH and SRIF release from hypothalamus; whereas, estradiol increased GHRH but decreased SRIF release. Our data show that estradiol and the androgens generated distinctly different patterns of GHRH and SRIF release, which in turn established gender-specific GH patterns.  相似文献   

2.
In the present study, we determined that rat mononuclear leukocytes possess specific receptors for growth hormone releasing hormone (GHRH). The results show that the binding of 125I-labeled GHRH to spleen and thymic cells was saturable and of a high affinity, approximately 3.5 and 2.5 nM for thymus and spleen cells, respectively. The Scatchard analysis revealed a binding capacity of approximately 54 and 35 fmol per 10(6) cells on thymus and spleen, respectively. The binding of GHRH was not competed by 10(-6) M growth hormone, corticotropin releasing factor, substance P or luteinizing hormone releasing hormone and vasointestinal peptide (VIP). Partial characterization of the receptor was accomplished by crosslinking 125I-labeled GHRH to thymus cells with disuccinimidyl suberate and polyacrylamide gel electrophoresis. Autoradiography of dried gels showed two major components in leukocytes and pituitary cells at approximately 42 and 27 kDa which could be diminished by unlabeled GHRH. The treatment of leukocytes with GHRH (10 nM) rapidly increased the intracellular free calcium concentration from a basal level of 70 +/- 20 nM to a plateau value of 150 +/- 20 nM in 6 min after stimulation. The functional activity of GHRH receptors was studied further by measuring lymphocyte proliferative responses and the increase in the level of cytoplasmic GH RNA. The presence of GHRH alone resulted in a dose-dependent increase in thymidine and uridine incorporation and a dose-dependent increase in the levels of GH RNA in the cytoplasm. Taken together, the results show that lymphocytes contain specific receptors for GHRH that are coupled to important biological responses and further support the concept of bidirectional communication between the immune and neuroendocrine tissues.  相似文献   

3.
4.
5.
The central control of growth hormone (GH) secretion from the pituitary gland is ultimately achieved by the interaction between two hypothalamic neurohormones, somatostatin which inhibits and growth hormone-releasing hormone (GHRH) which stimulates GH release. The regulation of the somatostatin and GHRH release from the hypothalamus is regulated by a range of other neuropeptides, neurotransmitters, neurohormones. In this mini review we attempt to provide a short summary covering the anatomy and chemical characteristics of the various cell populations regulating GH secretion as a tribute to Miklós Palkovits who pioneered the field of functional neuroanatomy of hypothalamic networks.Special Issue Dedicated to Miklós Palkovits.  相似文献   

6.
Growth hormone release inhibiting hormone (GHRIH) was administered by constant infusion over 75 minutes to eight acromegalic patients at different doses. 100 to 1,000 μg were equally effective in reducing circulating growth hormone (GH) levels; 25 μg lowered GH levels in only five patients, and at this dose the extent of the fall was smaller than from doses of 100 μg or more. 10 μg was ineffective. Injection of single doses of 500 μg by intravenous, subcutaneous, and intramuscular routes caused only small and transient reductions in GH levels, though the effect was improved by injecting the hormone intramuscularly in 2 ml of 16% gelatin. Injection of a suspension of 4 mg GHRIH in 1 ml of arachis oil lowered growth hormone levels for between three and four hours.In four acromegalic patients an oral 50-g glucose tolerance test was performed during a continuous infusion of either saline or 1,000 μg GHRIH. The “paradoxical” rise in growth hormone seen in these patients during the saline infusion was suppressed by GHRIH. The blood glucose responses were, moreover, modified by GHRIH in that the peak was delayed and occurred at the end of the infusion in each case. A “normal” glucose tolerance curve was converted to a “diabetic” type of response in two patients. This effect could be accounted for by the inhibition of insulin secretion known to occur with large doses of GHRIH.We speculate that acromegaly may be primarily a hypothalmic disease due to deficiency of GHRIH resulting in excessive secretion of growth hormone from the pituitary and adenoma formation due to inappropriate and prolonged stimulation of the pituitary.  相似文献   

7.
Growth hormone (GH) secretagogues (GHS) stimulate GH secretion in vivo in humans and in animals. They act on the ghrelin receptor, expressed in both the hypothalamus and the pituitary. It is unknown whether GHSs act predominantly by increasing the release of hypothalamic GH-releasing hormone (GHRH) or by acting directly on the somatotroph cells. We studied whether a potent GHS could stimulate growth in the absence of endogenous GHRH. To this end, we used GHRH knockout (GHRH-KO) mice. These animals have proportionate dwarfism due to severe GH deficiency (GHD) and pituitary hypoplasia due to reduced somatotroph cell mass. We treated male GHRH-KO mice for 6 wk (from week 1 to week 7 of age) with GH-releasing peptide-2 (GHRP-2, 10 microg s.c. twice a day). Chronic treatment with GHRP-2 failed to stimulate somatotroph cell proliferation and GH secretion and to promote longitudinal growth. GHRP-2-treated mice showed an increase in total body weight compared with placebo-treated animals, due to worsening of the body composition alterations typical of GHD animals. These data demonstrate that GHRP-2 failed to reverse the severe GHD caused by lack of GHRH.  相似文献   

8.
Children with brain tumors are at high risk of developing growth hormone deficiency (GHD) after cranial irradiation (CI) if the hypothalamus/pituitary (HP) axis falls within the fields of irradiation. The biological effective dose (BED) of irradiation to the HP region was determined, since BED gives a means of expressing the biological effect of various irradiation treatment schedules in a uniform way. Hypothalamic versus pituitary damage as cause of GHD was distinguished in 62 patients by comparing the growth hormone (GH) peak response to an insulin tolerance test (ITT)/arginine stimulation test and the GH response to a growth hormone-releasing hormone (GHRH) stimulation test. Peak GH response to a GHRH test was significantly higher (median 7.3 mU/l; range: 0.5--79.0 mU/l) than that of an ITT/arginine test (median 4.7 mU/l; range: 0.01--75.0 mU/l) (p = 0.017). Peak GH after a GHRH test was significantly inversely correlated to follow-up time (r(s) = -0.46, p < 0.0001) and to BED (R(s) = -0.28, p = 0.03), and both were found to be of significance in a multivariante regression analysis. We speculate that a significant number of patients developed hypothalamic radiation-induced damage to the GHRH secreting neurons, and secondary to this the pituitary gland developed decreased responsiveness to GHRH following CI in childhood.  相似文献   

9.
Growth hormone-releasing hormone (GHRH) is a main inducer of growth hormone (GH) pulses in most species studied to date. There is no information regarding the pattern of GHRH secretion as a regulator of GH gene expression. We investigated the roles of the parameters of exogenous GHRH administration (frequency, amplitude, and total amount) upon induction of pituitary GH mRNA, GH content, and somatic growth in the female rat. Continuous GHRH infusions were ineffective in altering GH mRNA levels, GH stores, or weight gain. Changing GHRH pulse amplitude between 4, 8, and 16 microg/kg at a constant frequency (Q3.0 h) was only moderately effective in augmenting GH mRNA levels, whereas the 8 microg/kg and 16 microg/kg dosages stimulated weight gain by as much as 60%. When given at a 1.5-h frequency, GHRH doubled the amount of GH mRNA, elevated pituitary GH stores, and stimulated body weight gain. In the rat model, pulsatile but not continuous GHRH administration is effective in inducing pituitary GH mRNA and GH content as well as somatic growth. These studies suggest that the greater growth rate, pituitary mRNA levels, and GH stores seen in male compared with female rats are likely mediated, in part, by the endogenous episodic GHRH secretory pattern present in males.  相似文献   

10.
Pituitary adenomas are mostly benign tumours that originate from differentiated anterior pituitary cells. Altered expression of growth factors or their receptors could enhance clonal expansion of pituitary adenoma cells. GHRH overstimulation or an activating point mutation in the Gs a-subunit leads to increased GH secretion and tumour formation. In contrast, IGF-I suppresses basal and GHRH-stimulated GH secretion in pituitary adenoma cells, whereas prolactin secretion is unaffected. Somatostatin analogues and pegvisomant, a novel growth hormone-receptor antagonist, results in a reduction of serum IGF-I levels and clinical improvement in patients suffering from pituitary adenoma. Thus, this review focuses on the role of the growth hormone/insulin-like growth factor system in pituitary tumorigenesis with particular focus on the genetic alterations described in pituitary adenomas up to now.  相似文献   

11.
The anterior pituitary regulates the function of multiple organ systems as well as body growth, and in turn is controlled by peptides released by the hypothalamus. We find that mutation of the Gsh-1 homeobox gene results in pleiotropic effects on pituitary development and function. Homozygous mutants exhibit extreme dwarfism, sexual infantilism and significant perinatal mortality. The mutant pituitary is small in size and hypocellular, with severely reduced numbers of growth hormone- and prolactin-producing cells. Moreover, the pituitary content of a subset of pituitary hormones, including growth hormone, prolactin and luteinizing hormone, is significantly decreased. The hypothalamus, although morphologically normal, is also perturbed in mutants. The gsh-1 gene is shown to be essential for growth hormone-releasing hormone (GHRH) gene expression in the arcuate nucleus of the hypothalamus. Further, sequence and electrophoretic mobility shift data suggest the Gsh-1 and GHRH genes as potential targets regulated by the Gsh-1-encoded protein. The mutant phenotype indicates a critical role for Gsh-1 in the genetic hierarchy of the formation and function of the hypothalamic-pituitary axis.  相似文献   

12.
目的:探讨睡眠中间断低氧对大鼠下丘脑-垂体-肾上腺轴和生长激素水平的影响.方法:大鼠分别给予吸入空气,持续低氧和间断低氧气体,在1 d,3 d,7 d和30 d后测定下丘脑促肾上腺皮质激素释放激素(CRH)和生长激素释放激素(GHRH)mRNA水平,并测定30d后血浆CRH,GHRH,促肾上腺皮质激素(ACTH)和皮质酮水平,分析其间的变化关系.结果:与对照组比较,在低氧后1 d,3 d,7 d后大鼠下丘脑CRH mRNA升高,GHRH mRNA降低,在30 d后,间断低氧组下丘脑CRH mRNA升高,GHRH mRNA降低,而持续低氧组则接近正常.间断低氧30 d后,血浆CRH、ACTH,皮质酮均升高,GHRH降低,而生长激素没有明显变化.结论:大鼠睡眠中慢性间断低氧可以引起下丘脑-垂体-肾上腺轴激素水平升高,反馈调节紊乱,可引起GHRH分泌抑制.  相似文献   

13.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

14.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

15.
16.
T-cell ontogenesis has been disclosed to depend on the interactions of thymus with endocrine glands and nervous system as follows: i/ Thymic deprivation not only impaired the immunological development but also brought about the dysgenesis of pituitary anterior lobe. Conversely, hypophysectomy resulted in thymus atrophy with the disturbed immune responses. ii/ Binding of pituitary acidophilic cell hormones to their receptors on thymus epithelial cells (TECs) augmented the release of thymic hormonal peptides (THPs) in vitro. iii/ Elevation of blood glucocorticoid level after stress caused atrophy of thymus cortex through double positive thymocyte apoptosis. Morpho-molecular alterations of cytoplasm preceded nuclear damage in the apoptotic thymocytes. iv/ Administration of thymosin to the streptozotocin-induced diabetic mice repressed mononuclear cell infiltration to the pancreatic islets. v/ Autonomic nerve fibers innervate thymic parenchyma. Binding of acetylcholines (Achs) to Ach receptors on TECs enhanced protein synthetic activity which seemed to connect with THP production. vi/ Thymectomy not only depressed the immune responses but also accelerated the reduction of leaming and memory ability with aging. The operation appears to disturb the brain adrenoceptor functions and to suppress the regulatory roles of hypothalamus to other nervous tissues. vii/ Several kinds of THPs, separated from the culture supernatant of TEC line by high performance liquid chromatography, showed a favorable effect on the thymocytes at different stage of differentiation and maturation. viii/ Thymosin, thymulin and THPs were capable of proliferating and differentiating thymocytes in vitro. However, the administration of each thymic product to the thymus-deprived animals could not restore from their "wasting disease". Since TECs are composed of a heterogeneous population, it would be one of essential ways for isolating "true thymus hormone" (TTH) to use the material which consists of functionally homogeneous subset of TECs. ix/ An additional grafting of pituitary gland to the thymus-grafted nude mice improved the disturbed T-cell ontogeny. Accordingly, the administration of "TTH" and pituitary acidophilic cell hormones might be more hopeful procedure for rescuing the thymus-deprived animals from "wasting disease".  相似文献   

17.
促生长激素释放激素(growth hormone releasing hormone, GHRH)主要生物学功能是刺激垂体细胞分泌生长激素,已被证实是动物体生长轴的重要调控因子之一,布氏鲳鲹是一种生长快速的海洋鱼类,为了揭示其代谢旺盛的调节机制,本研究从GHRH入手,利用RACE技术和qPCR方法对布氏鲳鲹GHRH基因进行了克隆、组织和胚胎表达模式研究。实验结果显示,布氏鲳鲹GHRH基因cDNA序列全长1019bp,5’UTR、3’UTR长度分别为327 bp和164 bp,开放阅读框528 bp,共编码175个氨基酸;同源性分析结果表明,布氏鲳鲹GHRH基因与其它鲈形目鱼类的同源性在91%以上。布氏鲳鲹GHRH基因的表达区域大多都集中在中枢系统,其中下丘脑表达量最高;GHRH在受精卵期到后续发育过程中均检测到表达,其表达水平在仔鱼期达到最高。序列分析、组织及胚胎表达的结果表明,布氏鲳鲹GHRH的调节模式仍然可能通过下丘脑调节垂体释放GH,GHRH在个体发育的较早阶段即开始发挥作用。本研究掌握了布氏鲳鲹GHRH基因的基本规律,为进一步研究生长轴的调控提供了理论参考。  相似文献   

18.
Models of physiological systems facilitate rational experimental design, inference, and prediction. A recent construct of regulated growth hormone (GH) secretion interlinks the actions of GH-releasing hormone (GHRH), somatostatin (SRIF), and GH secretagogues (GHS) with GH feedback in the rat (Farhy LS, Veldhuis JD. Am J Physiol Regul Integr Comp Physiol 288: R1649-R1663, 2005). In contrast, no comparable formalism exists to explicate GH dynamics in any other species. The present analyses explore whether a unifying model structure can represent species- and sex-defined distinctions in the human and rodent. The consensus principle that GHRH and GHS synergize in vivo but not in vitro was explicable by assuming that GHS 1) evokes GHRH release from the brain, 2) opposes inhibition by SRIF both in the hypothalamus and on the pituitary gland, and 3) stimulates pituitary GH release directly and additively with GHRH. The gender-selective principle that GH pulses are larger and more irregular in women than men was conferrable by way of 4) higher GHRH potency and 5) greater GHS efficacy. The overall construct predicts GHRH/GHS synergy in the human only in the presence of SRIF when the brain-pituitary nexus is intact, larger and more irregular GH pulses in women, and observed gender differences in feedback by GH and the single and paired actions of GHRH, GHS, and SRIF. The proposed model platform should enhance the framing and interpretation of novel clinical hypotheses and create a basis for interspecies generalization of GH-axis regulation.  相似文献   

19.
In order to investigate whether endogenous GHRH and somatostatin were involved in the mechanism of the paradoxical GH rise after TRH injection, changes in serum GH and plasma GHRH were examined before and after TRH injection in 12 cancer patients and changes in serum TSH and GH were similarly studied in 76 cancer patients including 31 GH-responders and 45 GH-nonresponders to TRH. TRH stimulated GH secretions without altering the circulating GHRH concentration in 4 of the 12 cancer patients. There was neither a significant correlation between the increase from the basal to maximum GH and GHRH after TRH injection in the 12 cancer patients nor a reciprocal relationship between the increase in GH and TSH after TRH injection in the 76 cancer patients. These findings suggested that the paradoxical GH rise after TRH injection in cancer patients was exerted by its direct action at the pituitary level, and not mediated through the hypothalamus.  相似文献   

20.
To study neuronal mechanism through which the hypothalamus exerts its influence on growth hormone (GH) synthesis, anterolateral hypothalamic knife cuts (ALHD) were used. After ALHD, GH messenger RNA (mRNA) content in the pituitary was reduced to 47% of the control value. Neither the prolactin mRNA level nor the total DNA content showed any significant change. In such animals, the serum GH level was significantly higher (184%) and pituitary GH content was lower (43%) than the control values. These results suggest that neuronal factor(s) outside the mediobasal hypothalamus plays an important role in the regulation of GH synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号