首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of diacerein on biosynthesis activities of chondrocytes in culture   总被引:1,自引:0,他引:1  
The maintenance of articular cartilage integrity requires a balance between anabolic and catabolic processes which are under the control of chondrocytes. These cells are living in an anaerobic environment and normally do not divide. They are responsible for the continuous maintenance of the cartilage extracellular matrix (ECM). Although multiple factors are involved in the dynamic homeostasis of cartilage, increases in cytokines such as interleukin-1 (IL-1) are associated with a decrease in synthesis and an increase in degradation of the proteoglycans and collagens. Conversely, growth factors such as transforming growth factor-beta (TGF-beta) stimulate chondrocyte synthesis of collagens and proteoglycans, and reduce the activity of IL-1 stimulated metalloproteases, thus opposing the inhibitory and catabolic effects of IL-1. By its capability to reduce IL-1 effects and to stimulate TGF-beta expression in cultured articular chondrocytes, diacerein could favour anabolic processes in the OA cartilage and, hence may contribute to delay the progression of the disease.  相似文献   

2.
3.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-beta (TGF-beta). In this paper, we show that TGF-beta inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-beta-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-beta is removed from the culture medium. The inhibitory effect of TGF-beta is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor-ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr = 116 and 80 kDa and a minor band of Mr = 100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-beta treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-beta to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   

4.
Several cytokines or growth factors induce macrophages to proliferate, become activated, differentiate, or die through apoptosis. Like the major macrophage activator IFN-gamma, the extracellular matrix protein decorin inhibits proliferation and protects macrophages from the induction of apoptosis. Decorin enhances the IFN-gamma-induced expression of the IAalpha and IAbeta MHC class II genes. Moreover, it increases the IFN-gamma- or LPS-induced expression of inducible NO synthase, TNF-alpha, IL-1beta, and IL-6 genes and the secretion of these cytokines. Using a number of extracellular matrix proteins, we found a negative correlation between adhesion and proliferation. However, the effects of decorin on macrophage activation do not seem to be mediated through its effect on adhesion or proliferation. Instead, this proteoglycan abolishes the binding of TGF-beta to macrophages, as shown by Scatchard analysis of (125)I-labeled TGF-beta, which, in the absence of decorin, showed a K(d) of 0.11 +/- 0.03 nM and approximately 5000 receptors/cell. This was confirmed when we treated macrophages with Abs to block the endogenously produced TGF-beta, which enhanced macrophage activation in a way similar to decorin. The increase in activation mediated by decorin demonstrates that macrophages are under negative regulation that can be reversed by proteins of the extracellular matrix.  相似文献   

5.
6.
Preparations of lapine synovial 'chondrocyte activating factors' (CAF) were analyzed for the presence of individual cytokines which modulate the production of neutral metalloproteinases (NMPs) and prostaglandin E2 (PGE2) by articular chondrocytes. A combination of different biochemical analyses suggested that synovial fibroblasts secrete IL-1 alpha, which activated chondrocytes directly, bFGF, which potentiated the activity of IL-1, and TGF-beta 1, which produced a bivalent response. TGF-beta 1 suppressed NMP synthesis by chondrocytes, but enhanced PGE2 synthesis. The IL-1 receptor antagonist protein (IRAP) eliminated chondrocyte activation by IL-1, but only partially inhibited activation by CAF. Thus, CAF may contain a cytokine in addition to IL-1 which activates chondrocytes. This putative additional factor was more thermosensitive than IL-1, and had an apparent molecular weight of approx. 20,000 when estimated by size exclusion chromatography. Of a variety of purified cytokines tested for their ability to induce NMPs in chondrocytes, only IL-1 was active. This favours the possibility that the activity which resists suppression by IRAP reflects the presence of a novel cytokine.  相似文献   

7.
Articular cartilage is an avascular, non-insulin-sensitive tissue that utilizes glucose as the main energy source, a precursor for glycosaminoglycan synthesis, and a regulator of gene expression. Facilitated glucose transport represents the first rate-limiting step in glucose metabolism. Previously, we demonstrated that glucose transport in chondrocytes is regulated by proinflammatory cytokines via upregulation of GLUT mRNA and protein expression. The objective of the present study was to determine differences in molecular mechanisms regulating glucose transport in chondrocytes stimulated with the anabolic transforming growth factor-beta1 (TGF-beta1) vs. the catabolic and proinflammatory cytokine IL-1beta. Both TGF-beta1 and IL-1beta accelerate glucose transport in chondrocytes. Although both IL-1beta and TGF-beta1 enhance glucose transport in chondrocytes to a similar magnitude, IL-1beta induces significantly higher levels of lactate. TGF-beta1-stimulated glucose transport is not associated with increased expression or membrane incorporation of GLUT1, -3, -6, -8, and -10 and depends on PKC and ERK activation. In contrast, IL-1beta-stimulated glucose transport is accompanied by increased expression and membrane incorporation of GLUT1 and -6 and depends upon activation of PKC and p38 MAP kinase. In conclusion, anabolic and catabolic stimuli regulate facilitated glucose transport in human articular chondrocytes via different effector and signaling mechanisms, and they have distinct effects on glycolysis.  相似文献   

8.
9.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

10.
The effects of transforming growth factor-beta (TGF-beta) on the synthesis of cartilage-matrix proteoglycan by cultured rabbit chondrocytes were examined. Rabbit chondrocytes were seeded at low density and exposed to a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with 0.5% fetal bovine serum, 1% bovine serum albumin, 50 micrograms/ml ascorbic acid, and 2 x 10(-7) M hydrocortisone (Medium A). Various combinations of TGF-beta, insulin-like growth factor-I (IGF-I), and fibroblast growth factor (FGF) were also added to Medium A, and the chondrocytes were grown to confluency. Chondrocytes grown with TGF-beta or FGF alone became flat or fibroblastic, those grown with FGF and TGF-beta became very elongated and formed distinct foci, and those grown with FGF and IGF-I showed the spherical configuration characteristic of overtly differentiated chondrocytes. Nevertheless, the incorporation of 3H with glucosamine into the large, chondroitin sulfate proteoglycan synthesized by cultures with FGF and TGF-beta was similar to that in cells grown with FGF and IGF-I and five times that in cells cultured with FGF alone. The increases in incorporation of 3H reflected real increases in proteoglycan synthesis, because chemical analyses showed an increase in the accumulation of macromolecules containing uronic acid in cultures with FGF and TGF-beta or with FGF and IGF-I. However, FGF in combination with either TGF-beta or IGF-I had little effect on the incorporation of 3H into small proteoglycans or hyaluronic acid. These results indicate that chondrocytes morphologically transformed with TGF-beta and FGF fully express the differentiated proteoglycan phenotype rather than the transformed glycosaminoglycan phenotype.  相似文献   

11.
Decorin is a small leucine-rich proteoglycan that plays a role in control of cell proliferation, cell migration, collagen fibrillogenesis and modulation of the activity of TGF-beta. In the present study, we investigated the effects of decorin on the production of metalloproteinases (MMP-1, -2, -3, -9 and -13), tissue inhibitors of metalloproteinases (TIMP-1, -2) and cytokines (TGF-beta, IL-1beta, IL-4 and TNF-alpha). Decorin was overexpressed in cultured human gingival fibroblasts using adenovirus-mediated gene transfer. Decorin infection resulted in decreased protein levels of MMP-1 and MMP-3 whereas MMP-2 and TIMP-2 secretion was increased. MMP-9, MMP-13 and TIMP-1 were not affected by decorin infection. Cytokine measurements by ELISA showed that decorin overexpression reduced TGF-beta and IL-1beta. In contrast, IL-4 and TNF-alpha levels were markedly increased in decorin-infected cells. These results suggest that decorin could modulate the expression of certain metalloproteinases and their inhibitors, as well as the production of cytokines. Altogether, our data suggest that decorin might play a pivotal role in tissue remodeling by acting on the balance between extracellular matrix synthesis and degradation.  相似文献   

12.
Transforming growth factor beta (TGF-beta) has been shown to induce chondrogenesis by embryonic rat mesenchymal cells (Seyedin et al., J. Biol. Chem., 261: 5693, 1986). Here we report the effects of bovine TGF-beta on the phenotypic expression of differentiated primary rat osteoblastic and chondroblastic cells. Culture of rat calvarial osteoblasts with TGF-beta resulted in a dose and time-dependent decrease in alkaline phosphatase activity. Levels of alkaline phosphatase were reduced to less than 10% of control values by 0.4 nM TGF-beta. The decrease became apparent after 24 hours and reached a maximum by 72 hours. Similarly, treatment of chondroblasts with 0.4 nM TGF-beta resulted in decreased production of cartilage-specific macromolecules: type II collagen and cartilage proteoglycan. Both cell types exhibited dramatic changes in cell shape after treatment with TGF-beta. Modulation of these differentiated markers by TGF-beta could be mimicked, in part, by addition of fibronectin. Addition of dihydrocytochalasin B blocked the inhibition of phenotypic expression by TGF-beta. These results indicate that TGF-beta inhibits phenotypic expression by osteoblasts and chondroblasts in vitro and suggest that this activity of TGF-beta may be mediated through interactions between the extracellular matrix and cytoskeletal elements.  相似文献   

13.
Mechanical forces can stimulate the production of extracellular matrix molecules. We tested the efficacy of ultrasound to increase proteoglycan synthesis in bovine primary chondrocytes. The ultrasound-induced temperature rise was measured and its contribution to the synthesis was investigated using bare heat stimulus. Chondrocytes from five cellular isolations were exposed in triplicate to ultrasound (1 MHz, duty cycle 20%, pulse repetition frequency 1 kHz) at average intensity of 580 mW/cm2 for 10 minutes daily for 1-5 days. Temperature evolution was recorded during the sonication and corresponding temperature history was created using a controllable water bath. This exposure profile was used in 10-minute-long heat treatments of chondrocytes. Heat shock protein 70 (Hsp70) levels after one-time treatment to ultrasound and heat was analyzed by Western blotting, and proteoglycan synthesis was evaluated by 35S-sulfate incorporation. Ultrasound treatment did not induce Hsp70, while heat treatment caused a slight heat stress response. Proteoglycan synthesis was increased approximately 2-fold after 3-4 daily ultrasound stimulations, and remained at that level until day 5 in responsive cell isolates. However, chondrocytes from one donor cell isolation out of five remained non-responsive. Heat treatment alone did not increase proteoglycan synthesis. In conclusion, our study confirms that pulsed ultrasound stimulation can induce proteoglycan synthesis in chondrocytes.  相似文献   

14.
Cartilage glycosaminoglycan (GAG) synthesis and composition, upon which its structural integrity depends, varies with age, is modified by anabolic and catabolic stimuli, and is regulated by UDP-glucuronate availability. However, how such stimuli, prototypically represented by transforming growth factor-beta1 (TGF-beta1) and IL-1alpha, modify GAG synthesis during aging of normal human articular cartilage is not known. Using explants, we show that chondroitin sulfate (CS):total GAG ratios decrease, whereas C6S:C4S ratios increase with cartilage maturation, and that chondrocytes in the cartilage mid-zone, but not the superficial or deep zones, exhibit uridine 5'-diphosphoglucose dehydrogenase (UDPGD) activity, which is also increased in mature cartilage. We also show that IL-1alpha treatment reduces both total GAG and CS synthesis, decreases C6S:C4S ratios (less C6S), but fails to modify chondrocyte UDPGD activity at all ages. On the other hand, TGF-beta1 increases total GAG synthesis in immature, but not mature, cartilage (stimulates CS but not non-CS), age-independently decreases C6S:C4S (more C4S), and increases chondrocyte UDPGD activity in a manner inversely correlated with age. Our findings show that TGF-beta1, but not IL-1alpha, modifies matrix synthesis such that its composition more closely resembles "less mature" articular cartilage. These effects of TGF-beta1, which appear to be restricted to periods of skeletal immaturity, are closely associated although not necessarily mechanistically linked with increases in chondrocyte UDPGD activity. The antianabolic effects of IL-1alpha are, on the other hand, likely to be independent of any direct modification in UDPGD activity and manifest equally in human cartilage of all ages.  相似文献   

15.
Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology. The RSV-transformed chondrocytes actively synthesized extracellular matrix proteins consisting mainly of type I collagen and fibronectin. RSV-transformed cells produced much less type X collagen than was produced by mock-transformed cells. There also was a significant reduction of proteoglycan levels secreted in both the cell-matrix layer and culture media from RSV-transformed chondrocytes. RSV-transformed chondrocytes expressed two- to- threefold more matrix metalloproteinase, while expressing only one-half to one-third of the alkaline phosphatase activity of mock infected cells. Finally, RSV-transformed chondrocytes failed to calcify the extracellular matrix, while mock-transformed cells deposited high levels of calcium and phosphate into their extracellular matrix. These results collectively indicate that RSV transformation disrupts the preprogrammed differentiation pattern of growth plate chondrocytes and inhibit chondrocyte terminal differentiation and mineralization. They also suggest that the expression of extracellular matrix proteins, type II and type X collagens, and the cartilage proteoglycans are important for chondrocyte terminal differentiation and matrix calcification. J. Cell. Biochem. 69:453–462, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Cartilage loss in osteoarthritis is characterized by matrix degradation and chondrocyte death. The lipid messenger ceramide is implicated in signal transduction of the catabolic cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1), as well as in apoptosis. The aim of this study was to examine the in vitro effects of ceramide on proteoglycan degradation, matrix-metalloproteinase (MMP) expression and activity, and chondrocyte apoptosis in rabbit articular cartilage. Cell-permeant ceramide C(2) stimulated proteoglycan degradation in cartilage explants starting from 3 x 10(-5) M, with 100% increase at the dose of 10(-4) M. This effect was probably due to MMPs since it was blocked by the MMP inhibitor batimastat. Furthermore, in isolated chondrocytes, C(2) stimulated the expression of MMP-1, 3, and 13 at the mRNA level, MMP activity, and MMP-3 production. Ceramide also caused chondrocyte apoptosis at doses ranging from 10(-5) to 10(-4) M. This study supports the hypothesis that ceramide might play a mediatory role in both matrix degradation and apoptosis in processes of cartilage loss such as those observed in osteoarthritis.  相似文献   

17.
Expression of several cellular and matrix proteins which increase significantly during the maturation of growth plate cartilage has been shown to be affected by various endocrine and autocrine factors. In the studies reported here, transforming growth factor-beta (TGF-beta 1) and basic fibroblast growth factor (bFGF) were administered to primary cultures of avian growth plate chondrocytes at pre- or post-confluent stages to study the interplay that occurs between these factors in modulating chondrocytic phenotype. Added continuously to pre-confluent chondrocytes, TGF-beta 1 stimulated the cells to produce abundant extracellular matrix and multilayered cell growth; cell morphology was altered to a more spherical configuration. These effects were generally mimicked by bFGF, but cell shape was not affected. Administered together with TGF-beta 1, bFGF caused additive stimulation of protein synthesis, and alkaline phosphatase (AP) activity was markedly, but transiently enhanced. During this pre-confluent stage, TGF-beta 1 also increased fibronectin secretion into the culture medium. Added to post-confluent cells, TGF-beta 1 alone caused a dosage-dependent suppression of AP activity, but bFGF alone did not. Under these conditions, TGF-beta 1 and bFGF had little effect on general protein synthesis, but TGF-beta 1 alone caused large, dosage-dependent increases in synthesis of fibronectin, and to some extent type II and X collagens. Given together with bFGF, TGF-beta 1 synergistically increased secretion of fibronectin. These findings reveal that regulation of phenotypic expression in maturing growth plate chondrocytes involves complex interactions between growth factors that are determined by timing, level, continuity, and length of exposure.  相似文献   

18.
In cartilage, the large chondroitin sulfate proteoglycan exists as aggregates by interacting with link protein and hyaluronic acid. In diseases associated with cartilage degeneration, the proteoglycan does not aggregate because of a defect in the hyaluronate-binding activity. Since interleukin-1 (IL-1) is a secretory product of activated macrophages and may influence the cartilage function in joints, we studied the effects of IL-1 on the synthesis and assembly of proteoglycan by rabbit articular chondrocytes in culture. IL-1-treated cells showed a modest increase in the total proteoglycan synthesis, but also showed a more pronounced decrease in the incorporation of extracellular matrix. Affinity chromatography of the conditioned media on hyaluronic acid-Sepharose revealed that all of the proteoglycan of control cells strongly bound to hyaluronate. The IL-1-treated medium contained two fractions: one that was strongly bound to the column and a second that did not bind. The results demonstrate that the IL-1-treated cells cannot incorporate proteoglycan into the matrix partly because of a defect in the proteoglycan molecules and partly due to other mechanisms regulating proteoglycan assembly.  相似文献   

19.
熊维  覃再嫩  贺茂林 《蛇志》2021,(1):17-22
目的探讨荷叶碱对软骨细胞的保护作用及对软骨细胞炎症的抗炎作用。方法取体外分离培养3~5天的SD大鼠膝关节软骨细胞,应用10μg/ml LPS诱导软骨细胞建立体外骨关节炎模型。将实验分为3组,即空白组、模型组(LPS)和实验组(LPS+荷叶碱)。通过活/死细胞(Calcein-AM/EthD-I)双染色,实时荧光定量聚合酶链反应(qRT-PCR),HE染色(苏木素-伊红),番红O染色,免疫荧光染色,检测荷叶碱抑制软骨细胞外基质降解作用及缓解软骨细胞炎症的作用。结果荷叶碱浓度为10μM时,无明显毒性,Calcein-AM/EthD-I染色表明该浓度对炎症诱导的软骨细胞有保护作用。qRT-PCR表明,与模型组相比,实验组的Col2al表达升高,MMP-13和IL-6表达下降。HE染色(苏木素-伊红)、番红O染色、免疫荧光染色结果表明荷叶碱能够维持软骨细胞的形态,促进软骨细胞蛋白多糖的分泌,抑制MMP-13的表达。结论浓度为10μM的荷叶碱对LPS诱导的软骨细胞有较好保护作用及抗炎作用,无毒副作用。  相似文献   

20.
Oncostatin M (OSM) stimulates cartilage degradation in rheumatoid arthritis (RA) by inducing matrix metalloproteinases (MMPs) and aggrecanases (ADAMTS; a disintegrin and metalloproteinase with thrombospondin motif). Transforming growth factor beta (TGF-beta1) induces cartilage repair in joints but in excessive amounts, promotes inflammation. OSM and TGF-beta1 also induce tissue inhibitor of metalloproteinase-3 (TIMP-3), an important natural inhibitor of MMPs, aggrecanases, and tumor necrosis factor alpha converting enzyme (TACE), the principal proteases involved in arthritic inflammation and cartilage degradation. We studied cartilage protective mechanisms of the antiinflammatory cytokine, interleukin-4 (IL-4). IL-4 strongly (MMP-13 and TIMP-3) or minimally (ADAMTS-4) suppressed OSM-induced gene expression in chondrocytes. IL-4 did not affect OSM-stimulated phosphorylation of extracellular signal-regulated kinases (ERKs), protein 38 (p38), c-Jun N-terminal kinase (JNK) and Stat1. Lack of additional suppression with their inhibitors suggested that MMP-13, ADAMTS-4, and TIMP-3 inhibition was independent of these mediators. IL-4 also downregulated TGF-beta1-induced TIMP-3 gene expression, Smad2, and JNK phosphorylation. Additional suppression of TIMP-3 RNA by JNK inhibitor suggests JNK implication. The cartilage protective effects of IL-4 in animal models of arthritis may be due to its inhibition of MMPs and ADAMTS-4 expression. However, suppression of TIMP-3 suggests caution for using IL-4 as a cartilage protective therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号