首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New and improved procedures are reported for the synthesis of [M(DBCOT)(μ-Cl)]2 (M = Rh, Ir; DBCOT = dibenzo[a,e]cyclooctatetraene) from MCl3(H2O)x or [M(COD)(μ-Cl)]2 and DBCOT. Treatment of [M(DBCOT)(μ-Cl)]2 with [(LAu)3(μ-O)]BF4(L = PPh3, PtBu3) yields the mixed-metal oxo complexes [M(DBCOT)(μ4-O)(AuL)2]2(BF4)2. Dimeric [Rh(DBCOT)(μ-OH)]2 is obtained from the reaction of [M(DBCOT)(μ-Cl)]2 with KOH in EtOH/H2O. All complexes except [Rh(DBCOT)(μ-Cl)]2 have been structurally characterized by single crystal X-ray diffraction.  相似文献   

2.
Four novel mononuclear Rh-Cp* and Ir-Cp* complexes with polycyclic aromatic hydrocarbons (PAHs), [M(Cp*)(η6-PAHs)](BF4)2 (M = Rh and Ir; Cp* = η5-C5Me5; PAHs = phenanthrene (phn), pyrene (pyr) and triphenylene (triph)), were prepared by the reactions of the intermediate [M(Cp*)(Me2CO)3]2+ with appreciable PAHs. Their structures were characterized by a single crystal X-ray analysis, 1H, 13C {1H} NMR and 2D NMR techniques. The X-ray crystallographic studies showed that the [M(Cp*)]2+ fragment is η6-coordinated to one terminal benzene ring in each PAH. In particular, it is interesting to note that the partial π/π/π/π interaction was formed in the Ir-pyr complex [Ir(Cp*)(η6-pyr)](BF4)2. The 1D and 2D NMR studies described that the Rh-Cp* and Ir-Cp* complexes with PAHs gave unique 1H and 13C {1H} NMR spectra with positive coordination shifts (Δδ(1H, 13C)) in (CD3)2CO at 23 °C, which are likely induced by the local effect and the non-local effect on the coordination of the [M(Cp*)]2+ fragment to PAHs. The decreasing of the coupling constants (3JH-H) in the η6-coordinated benzene ring is also induced, with no changes in the uncoordinated benzene rings. The time-course of 1H NMR spectra showed that Rh-Cp* and Ir-Cp* complexes with PAHs are partially dissociated to [M(Cp*)(Me2CO)3]2+ and metal-free PAHs in (CD3)2CO at 23 °C. It was demonstrated that their stabilities are in the order of Ir-triph, Ir-phn, Ir-pyr and Rh-triph complexes in (CD3)2CO.  相似文献   

3.
The reaction of uranyl acetate with (2,2′-(1E,1′E)-(2-benzyl-3-hydroxyquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene) diphenol) (H2L1) at room temperature in methanol and chloroform yields the UO2L1 complex. Crystals were grown through solvent diffusion of the ligand-metal complex in dimethyl formamide with diethyl ether to prepare: UO2L1 · DMF (1). Complexes with 2,2′-(1E,1′E)-(2-benzyl-3-hydroxyquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)dibenzene-1,4-diol (H2L2) and 2,2′-(1E,1′E)-(2-hydroxy-3-isopropylquinoxaline-6,7-diyl)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)diphenol (H2L3) were also prepared, and crystals of the uranyl complexes (UO2L2 · DMF (2) and (3)) grown from DMF/ether. A fourth complex UO2L4 · H2O (4) was prepared through layering a solution of the tetra-tert-butyl substituted 2-quinoxalinol salen ligand H2L4 in acetone with an aqueous solution containing uranyl acetate. The complexes exhibit a symmetric core featuring a slightly distorted bicapped pentagonal geometry around the uranium center with two oxo-groups and two imine groups from the ligand chelating the ligand and the fifth site in the coordination plane of the ligand occupied by a solvent molecule. These compounds have been characterized using solution (NMR and UV-Vis) and solid-state (IR, X-ray crystallography) techniques. Complexes of H2L4 with early transition metals; Mn2+, Co2+, Ni2+, and Cu2+ are also prepared and characterized for comparison of solution and spectroscopic characteristics.  相似文献   

4.
We report the synthesis of phosphorescent divalent osmium complexes of the form [Os(N-N)2(L-L) or Os(L-L)2(N-N)]2+ (PF6)2 where N-N is a derivative of 1,10-phenanthroline, and L-L is a diarsine or diphosphine ligand: 1,2-bis(dimethylphosphino)ethane, 1,2-bis(dicyclohexylphosphino)ethane, or 1,2-bis(dimethylarseno)benzene. X-ray structures have been determined, luminescent and electrochemical properties have been measured and DFT calculations have been performed on the complexes. The emission lifetime of complexes of structure Os(II)(L-L)2(N-N) are longer than the those of Os(II)(N-N)2(L-L). The DFT calculations show that there is significant mixing of the π−π into the dπ−π charge-transfer state for the complexes of the form Os(II)(L-L)2(N-N) resulting in a longer lived excited state. Through DFT calculations we were able to conclude that the HOMO of the complexes is a d orbital on the osmium while the LUMO is the b1(ψ) π system of the phenanthroline. However, we found that the HOMO did not have the correct symmetry to enable strong charge transfer to the phenanthroline to be observed, and the strong MLCT transition observed in the spectra is the metal d HOMO(−1) to the b1 π LUMO of the phenanthroline.  相似文献   

5.
Synthetic, single crystal X-ray structural characterizations and vibrational spectroscopic studies are recorded for a number of adducts of 1:2 stoichiometry of silver(I) oxyanion salts for oxyanions of differing basicity (perchlorate, nitrate, carboxylate (as trifluoroacetate (≡‘tfa’))), with a variety of pyridine (≡‘py’) or piperidine (≡‘pip’) bases hindered in the 2- (and, sometimes, 6-) position(s) by methyl or non-coordinating functionalities of other types, the ligands employed being 2-methylpyridine (‘2mp’), 2,6-dimethylpyridine (‘lut’), 2,4,6-trimethylpyridine (‘coll’), quinoline (‘quin’), 2,2,6,6-tetramethylpiperidine (‘tmp’), 2-amino-,6-methylpyridine (‘nmp’), 2-methoxypyridine (‘mop’) and 2-cyanomethylpyridine (‘pcn’); studies are also recorded of adducts with the parent, ‘py’, base and with 4-cyanopyridine (‘cnp’). In the majority of the complexes, the NAgN motif predominates, as might be expected, variously distorted from linearity in response to changes in (competing) basicities of the nitrogen base and any nearby anion or solvent molecule; an unusual variation is found in the highly hindered tmp/tfa adduct which is a monohydrate with interacting water displacing the rather basic anion, the converse being the case in the corresponding nitrate, also a monohydrate. With the less-hindered base mpy, both nitrate and trifluoroacetate are binuclear, with O and OCO bridges corresponding to centrosymmetric four- and eight-membered rings, respectively; the quin/nitrate adduct is more complex, also binuclear but with bis(chelating) nitrate. AgNO3:py (1:3) is found to be binuclear, while with Agtfa/py, a 3:2 adduct [Ag(py)2][Ag2(tfa)3](∞|∞) is found with a novel, polymeric, strongly interacting anion. A further pair of 1:3 adducts, AgNO3:2np (2np = 2-aminopyridine) and Agtfa:nmp, both mononuclear [AgL3]+X are described, differing in the modes of interaction of silver with the three N-bases. In all simple NAgN systems with aromatic ligands, the pair of ligand ‘planes’ is disposed quasi-parallel.The far-IR spectra of [AgL2]Y (L = lut, coll; Y = ClO4, NO3, tfa) and of [Ag(py)n](ClO4) (n = 2,4) have been recorded and the ν(AgN) bands assigned in the range 80-240 cm−1. For the L = lut, coll complexes, there is a clear trend of decreasing ν(AgN) following increasing r(AgN) as the interaction with the counterion increases along the series Y = ClO4, NO3, tfa.  相似文献   

6.
A reaction of [Cp*IrCl2]2 {Cp* = η5-C5(CH3)5} and 2-mercaptobenzimidazole (H2bimt) in methanol in a 1:2 molar ratio gave a yellow complex of [Cp*IrCl2(H2bimt)]·CH3OH (1). In compound 1 the H2bimt acts as a monodentately S-donating (κS) ligand. A similar reaction of [Cp*IrCl2]2 and H2bimt in the presence of NaOCH3 (molar ratio of 1:2:2) gave an orange product (2) on addition of excess amount of NH4PF6. Compound 2 was composed of an unsymmetrical dinuclear complex cation, [(Cp*IrCl)2(μ-Hbimt)(μ-H2bimt)]+, a PF6 anion, and water molecules of crystallization. In the complex cation, H2bimt bridges two IrIII centers by S atom in the μ-κS:κS mode, while the monodeprotonated Hbimt ligand bridges via S and N atoms in the μ-κS:κN1 mode.  相似文献   

7.
Reactions of GaCl3 with pyrazole-containing ligands of the pyrazole-imine-phenol (HL1-HL3) or pyrazole-amine-phenol (HL4-HL6) types led to the synthesis of well-defined [GaL2]+ homoleptic complexes (1-6). Complexes 1-6 were characterized by elemental analysis, ESI-MS (electrospray ionization-mass spectrometry), IR and NMR spectroscopies, and in the case of Complex 1 also by X-ray diffraction analysis. In complexes 1-3, the pyrazole-imine-phenolate ligands act as monoanionic chelators that coordinate to the metal in a meridional fashion, while 4-6 contain monoanionic and facially coordinated pyrazole-amine-phenolate ligands. Complexes 1-3 have a greater stability in solution compared to 4-6, which have shown a more pronounced tendency to release the respective ancillary ligands. The cytotoxicity of 1-6 and of the respective ligands (HL1-HL6) was evaluated against human prostate cancer cells PC-3 and human breast cancer cells MCF-7. The substituents of the phenolate rings strongly influenced the cytotoxicity of the compounds. Complexes 3 and 6 that contain chloride substituents at the phenolate rings have shown the highest cytotoxicity, including in the cisplatin-resistant PC-3 cell line. The cytotoxic profile of 3 and 6 is very similar to the one displayed by the respective anchor ligands, respectively HL1 and HL6. The cytotoxic activity of 3 and 6 is slightly increased by the presence of transferrin, and both complexes provoke cell death mainly by induction of apoptotic pathways.  相似文献   

8.
The meagre (structurally defined) array of 1:2 silver(I) (pseudo-)halide:unidentate nitrogen base adducts is augmented by the single-crystal X-ray structural characterization of the 1:2 silver(I) thiocyanate:piperidine (‘pip’) adduct. It is of the one-dimensional ‘castellated polymer’ type previously recorded for the chloride: ?Ag(pip)2(μ-SCN)Ag(pip)2? a single bridging atom (S) linking successive silver atoms. By contrast, in its copper(I) counterpart, also a one-dimensional polymer, the thiocyanate bridges as end-bound SN-ambidentate: ?CuSCNCuSCN? A study of the 1:1 silver(I) bromide:quinoline (‘quin’) adduct is recorded, as the 0.25 quin solvate, isomorphous with its previous reported ‘saddle polymer’ chloride counterpart.Recrystallization of 1:1 silver(I) iodide:tris(2,4,6-trimethoxyphenyl)phosphine (‘tmpp’) mixtures from py and quinoline (‘quin’)/acetonitrile solutions has yielded crystalline materials which have also been characterized by X-ray studies. In both cases the products are salts, the cation in each being the linearly coordinated silver(I) species [Ag(tmpp)2]+, while the anions are, respectively, the discrete [Ag5I7(py)2]2− species, based on the already known but unsolvated [Cu5I7]2− discrete, and the polymeric, arrays, and polymeric . The detailed stereochemistry of the [Ag(tmpp)2]+ cation is a remarkably constant feature of all structures, as is its tendency to close-pack in sheets normal to their P-Ag-P axes.The far-IR spectra of the above species and of several related complexes have been recorded and assigned. The vibrational modes of the single stranded polymeric AgX chains in [XAg(pip)2](∞|∞) (X = Cl, SCN) are discussed, and the assignments ν(AgX) = 155, 190 cm−1 (X = Cl) and 208 cm−1 (X = SCN) are made. The ν(AgX) and ν(AgN) modes in the cubane tetramers [XAg(pip)]4 (X = Br, I) are assigned and discussed in relation to the assignments for the polymeric AgX:pip (1:2) complexes, and those for the polymeric [XAg(quin)](∞|∞) (X = Cl, Br) compounds. The far-IR spectra of [Ag(tmpp)2]2[Ag5I7(py)2] and its corresponding 2-methylpyridine complex show a single strong band at about 420 cm−1 which is assigned to the coordinated tmpp ligand in [Ag(tmpp)2]+, and a partially resolved triplet at about 90, 110 and 140 cm−1 which is assigned to the ν(AgI) modes of the [Ag5I7L2]2− anion. An analysis of this pattern is given using a model which has been used previously to account for unexpectedly simple ν(CuI) spectra for oligomeric iodocuprate(I) species.  相似文献   

9.
The crystal structures of the complexes [RuCl(Nap-o-phd)(AsPh3)] and [RuBr(Nap-o-phd)(PPh3)] (where H2-Nap-o-phd = N,N′-bis(2-hydroxy-1-naphthaldehyde) o-phenylenediamine) have been determined by single crystal X-ray diffraction techniques. The antibacterial properties of the complexes have also been examined.  相似文献   

10.
Reactions of 2-(arylazo)pyridine (La-c) with [IrCl3(PPh3)2] in two different solvents, viz. ethanol and toluene are reported. In refluxing toluene two new isomeric (mer and fac geometries) iridium complexes, having molecular formula [IrCl3(PPh3)(L)] (1 and 2) have been isolated. The reaction in refluxing ethanol yielded two new hydrido complexes of molecular formula [IrHCl2(PPh3)(L)] (3) and [IrHCl(PPh3)2(L)]Cl (4) along with the compound 2. All the complexes have been thoroughly characterized by NMR, UV-Vis spectroscopy, cyclic voltammetry and X-ray crystallographic analysis. The 1H NMR spectra of the hydrido complexes 3 and 4 showed a doublet and a triplet signals at δ −20.43 and −14.82 respectively due to coupling with magnetically equivalent phosphorous nuclei. Strong trans influence of the π-acceptor ligands guided the X-ray structural parameters; bonds trans to the these ligands are unusually long. Similar elongation effect was also noted for the bonds trans to the coordinated hydrido ligand. UV-Vis-NIR spectrum consisted of multiple transitions in the UV and visible regions. Cyclic voltammetry of each of these complexes has exhibited a reductive response between −0.25 and −0.55 V, which has been assigned to azo-ligand reduction. The compound 3, however, showed a quasireversible oxidative wave near 1.45 V, due to IrIII/IrIV couple.  相似文献   

11.
Addition of KTpPh2 to a solution of NiX2 (X = Cl, Br, NO3, OAc and acac) or NiBr(NO)(PPh3)2 in THF yields the structurally characterized series [NiCl(HpzPh2)TpPh2] (1) and [NiXTpPh2] (X = Br 2, NO 3, NO34, OAc 5 and acac 6) including the first example of a tris(pyrazolyl)borate nickel nitrosyl complex. IR spectroscopy confirms that all the TpPh2 ligands are κ3 coordinated and that the NO ligand in 3 is linearly bound. Electronic spectra are consistent with four- or five-coordinate species in solution. NMR spectroscopic studies indicate that the complexes are paramagnetic, with the exception of 3. This is confirmed by magnetic susceptibility studies, which suggest that complexes 1, 2 and 4-6 are paramagnetic with two unpaired electrons. X-ray crystallographic studies of 5 reveal a distorted trigonal bipyramidal nickel centre with a symmetrically coordinated acetate ligand.  相似文献   

12.
A series of new iridium(III) complexes containing pentamethylcyclopentadienyl (Cp = η5-C5Me5) and 1,8-naphthyridine (napy) have been prepared. X-ray crystallography revealed that napy acted as a monodentate, a didentate chelating, and a bridging ligand in complexes of [CpIrCl2(napy)] (1), [CpIrCl(napy)]PF6 (2), and [(CpIrCl)2(H)(napy)]PF6 (4), respectively. The crystal structure of [CpIr(napy)2](PF6)2 (3) has also been determined; the dicationic complex bore both monodentate and chelating napy ligands. Dinuclear CpIrIII complex bridged by napy was only isolable if two IrIII centers were supported by a hydride (H) bridge. In complexes 2 and 3, the four-membered chelate rings formed by napy exhibited a large steric strain; in the rings the NIrN bond angles were only 60.5(2)-61.0(4)° and the IrNC angles were 94.7(8)-96.7(8)°. The bridging coordination of napy in complex 4 also afforded a large strain, i.e., the IrIII centers were displaced by 0.84(3) Å from the napy plane, due to the steric interaction between two CpIrCl moieties. The monodentate napy complex 1 in CDCl3 or CD2Cl2 at ambient temperature showed a rapid coordination-site exchange reaction, which gave two N sites of napy equivalent; at temperatures below −40 °C, the 1H NMR spectra corresponded to the molecular structure of [CpIrCl2(napy-κN)]. The analogous diazido complex of [CpIr(N3)2(napy)] (5) has also been prepared, and the crystal structure has been determined. In contrast to the dichloro complex 1, the diazido complex 5 exhibited a dissociation equilibrium of coordinated napy in solution.  相似文献   

13.
We report the synthesis, characterisation, and photophysical and electrochemical properties of a series of luminescent cyclometallated iridium(III) bipyridine-aldehyde complexes [Ir(N-C)2(bpy-CHO)](PF6) (HN-C=2-phenylpyridine, Hppy (1); 2-(4-methylphenyl)pyridine, Hmppy (2); 1-phenylpyrazole, Hppz (3); 3-methyl-1-phenylpyrazole, Hmppz (4); 7,8-benzoquinoline, Hbzq (5); 2-phenylquinoline, Hpq (6); bpy-CHO=4-formyl-4-methyl-2,2-bipyridine). The X-ray crystal structures of complexes 1 and 4 have been determined. On the basis of the photophysical data, the emission of these complexes is assigned to an excited state of predominantly triplet metal-to-ligand charge-transfer (3MLCT) (dπ(Ir) → (bpy-CHO)) character. For complex 6, the excited state is also mixed with substantial (3IL) () (pq) character. The protein bovine serum albumin has been labelled with these complexes to produce luminescent bioconjugates. The photophysical properties of the luminescent conjugates have also been investigated.  相似文献   

14.
The reactions of trans-[(PPh3)2M(CO)Cl] (M = Rh and Ir) with benzildiimine (H2BDI = 2) derived from benzil-bis(trimethylsilyl)diimine (Si2BDI) (1) in a 1:2 and 1:1 molar ratio afforded the cationic bis-benzildiiminato complexes [Rh(PPh3)2(HBDI)2]Cl (3) and the mono-benzildiimine complex [Ir(PPh3)2(CO)(H2BDI)]Cl (4), respectively. Both complexes are fully characterized using IR, FAB-MS, NMR spectroscopy and elemental analysis. The single crystal X-ray structure analysis reveals a distorted octahedral coordination geometry for the Rh(III) in 3 and a highly distorted square pyramidal geometry for Ir(I) in 4. In addition, the solid-state structure of Si2BDI is reported here for the first time showing the substituents highly twisted because of steric reasons.  相似文献   

15.
Syntheses and room-temperature single crystal X-ray structural characterizations are recorded for a variety of silver(I) oxyanion (perchlorate, nitrate and trifluoroacetate (‘tfa’) (increasing basicity)) adducts, AgX, with a number of pyridine (‘py’) bases, L, functionalized in the 2-position with N- or O-donor groups, namely 2-amino-, 2-amino-6-methyl-, 2-aminomethyl-, 2-hydroxy-, 2-methoxy- and 2-acetyl- pyridines, ‘2np’, ‘nmp’, ‘amp’, ‘ohp’, ‘mop’, and ‘acp’. A variety of stoichiometries and associated structural types are defined: [Ag(chelate)2]X, L/X = amp,acp/ClO4, [XAg(chelate)2], L/X = acp/tfa, of 1:2 AgX:L stoichiometry; for 1:1 stoichiometry, although a discrete mononuclear complex [(chelate)Ag(O2NO)] is defined for AgNO3: acp (1:1), all others are polymers, successive silver atoms being linked by N,N′-bridging ligands singly (L/X = 2np/ClO4 (?HAgHTAgTHAgH?), amp/ClO4, NO3 (?HTAgHTAg?) (‘H’ ≡ head, ‘T’ = tail)) or pairwise, ?L2AgX2AgL2Ag? (L/X = 2np/tfa, nmp/NO3). More complex polymeric arrays are found with L/X = ohp/NO3, tfa, where interaction with the metal takes place via the O-donor only, the py functionality being protonated, and in adducts of more complex stoichiometry AgNO3:mop (2:3) and AgNO3:2np (3:4).  相似文献   

16.
The multiple coordination possibilities of 1,8-naphthyridine-2-one (HOnapy) and 5,7-dimethyl-1,8-napthyridine-2-one (HOMe2napy) ligands allow the synthesis of a variety of tri- di- and mononuclear complexes, showing fluxional behaviour and frequent exchange of the coordinated ML2 fragments. Thus, reactions of [M2(μ-OMe)2(cod)2] (cod = 1,5-cyclooctadiene) with HOnapy and HOMe2napy yield the compounds of the general formula [M(μ-OR2napy) (cod)]n (M = Ir, R = Me (1a, 1b, H (2); M = Rh, R = Me (3a, 3b). They crystallise as inconvertible yellow (a) and purple/orange (b) forms and also show a puzzling behaviour in solution. X-ray diffraction studies on both forms (3a, 3b) and spectroscopic data reveal that the yellow forms are mononuclear complexes whilst the dark-coloured crystals contain dinuclear complexes. In solution, the nuclearity of the complexes depends on the solvent. In addition both types of complexes are fluxional. The mixed-ligand complexes [M2(μ-OMe2napy)2(CO)2(cod)] M = Ir (5), Rh (6) have been isolated and characterised; they are found to be intermediates in the synthesis of the trinuclear complexes [M33-OMe2napy)2(CO)2(cod)2]+ M = Rh (8), Ir (9). Reactions of [IrCl(CO)2(NH2-p-tolyl] with the complexes [Rh(μ-OR2napy)(diolefin)]n followed by addition of a poor donor anion is a general one-pot synthesis for the hetertrinuclear complexes [Rh2Ir(μ3-OR2napy)2(CO)2(diolefin)2]+ (R=Me, DIOLEFIN = cod (10), tetrafluorobenzo-barrelene (tfbb) (11), 2,5-norbornadiene (nbd) (12); R=H, DIOLEFIN=cod (13)). This synthesis follows a stepwise mechanism from the mononuclear to the trinuclear complexes in which mixed-ligand heterodinuclear complexes are involved as intermediates of the type [(diolefin)Rh(μ-OMe2napy)2Ir(CO)2]. Heteronuclear complexes which possess the core [RhIr2]3+, such as [RhIr23-OR2napy)2(CO)2(cod)2]BF4 (R=Me (14), H (15)), result from the reaction of 1 or 2 with [Rh(CO)2Sx]+ (S = solvent). The trinuclear complexes undergo two chemically reversible one-electron oxidation processes. The chemical oxidation of 10, 14 and 9 with silver salts gives the mixed-valence trinuclear radicals [Rh2Ir(μ3-OMe2napy)2(CO)2(cod)2]2+ (16), [RhIr23-OMe2napy)2(CO)2(cod)2]2+ (17) and [Ir33-OMe2napy)2(CO)2(cod)2]2+ (18), which have been isolated as the perchlorate and tetrafluoroborate salts. The EPR spectrum of 16 indicates that the unpaired electron is essentially in an orbital delocalised on the metals. The molecular structures of the complexes 3a, 3b, 6, 10b and 16a are described. Crystals of 3a are triclinic, P-1, with a = 9.7393(2), b = 14.0148(4), c = 16.0607(4) Å, α = 88.122(3), β = 83.924(3), γ = 87.038(3)°, Z = 4; 3b crystallises in the Pna2i orthorhhombic space group, with a = 16.7541(3), B = 11.7500(8), c = 17.7508(7) Å, Z = 4; complex 6 is packed in the monoclinic space group P2i/c, a = 9.6371(1), b = 11.8054(4), c = 27.2010(9) Å, β = 90.556(4)°, Z = 4; crystals of 10b are monoclinic, P21/n, with a = 17.546(7), b = 13.232(6), c = 17.437(8) Å, β = 106.18(1)°, Z = 4; crystals of 16a are triclinic, P-1, with a = 10.318(4), b = 12.562(6), C = 19.308(8) Å, α = 92.12(8), β = 97.65(9), γ = 90.68(5)°, Z = 2. The five different structures show the coordination versatility of the OMe2napy molecule as ligand, which behaves as a N,N′-chelating (3a), bidentate N,O-donor (3b, 6), or as a tridentate N,N′,O-donor bridging ligand (10b, 16a).  相似文献   

17.
Reaction of 2 equiv. amount of copper(II) chloride dihydrate with 2 equiv. of methyl-5-methyl-1-(4,6-dimethyl-2-pyrimidyl)pyrazole-3-carboxylate (DpymPzC) in presence of 1 equiv. of 2-mercapto-4,6-dimethylpyrimidine (DpymtH) at pH ∼ 6 afforded the tricoordinated copper(I) complex [Cu(DpymPzC)Cl] (1). The same reaction with copper(II) perchlorate hexahydrate, as the metal salt under the same equivalent ratio at pH ∼ 6 formed the tetracoordinated copper(I) complex [Cu(DpymPzC)2]ClO4 (2). In both the cases, the role of DpymtH is nothing but only to reduce the copper(II) salt in situ finally forming the copper(I) complex. On the other hand, the direct reaction between the copper(I) thiocyanate and DpymPzC in 2:2 equiv. ratio produced a tricoordinated copper(I) complex [Cu(DpymPzC)SCN] (3). In a similar reaction of 2 equiv. amount of copper(II) chloride dihydrate with 2 equiv. amount of ethyl-5-methyl-1-(2-pyridyl)pyrazole-3-carboxylate (PyPzC) in presence of 1 equiv. of DpymtH at pH ∼ 6, an intense red coloured microcrystalline compound (4) was obtained. In contrast, 1 equiv. of PyPzC and 2 equiv. of DpymtH on reaction with 1 equiv. of copper(II) chloride dihydrate at pH ∼ 6 produced a novel tetranuclear mixed coordinated [Cu4(DpymtH)4Cl4] complex (5). Here DpymtH plays dual role - a reducing agent for the copper(II) salt followed by a chelating ligand towards copper(I) so formed in situ. Among the above species, 1, 2 and 5 are crystallographically characterized. In 1, the central copper atom is in distorted triangular planar geometry with N2Cl chromophore whereas in 2, the same is in distorted tetrahedral geometry with N4 chromophore. Notably, the extent of distortion from the ideal geometry is more in 2. In 5, which is in chair conformation, out of four copper atoms, two being in S2Cl chromophore are tricoordinated and the remaining two are tetracoordinated with NS2Cl chromophore. The metal centers are bridged through DpymtH in its ‘thione’ form. Interestingly, the chelation (in part) results in formation of the highly stable four-membered two chelate rings around the two tetracoordinated copper atoms in 5. The two copper centers along the long arm of the chair are separated through a distance of 5.190 Å while those in the short arm are at a length of 3.629 Å. The electronic, IR spectra and electrochemistry of the complexes 1, 2 and 5 have also been investigated.  相似文献   

18.
The complexes [Ru2(CO)5(μ-FpyO)2]2 (1), [Ru2(CO)4(μ-ClpyO)2]2 (2), and [Ru2(CO)4(μ-BrpyO)2]2 (3) were prepared from Ru3(CO)12 and 6-fluoro-2-hydroxypyridine (FpyOH), 6-chloro-2-hydroxypyridine (ClpyOH) and 6-bromo-2-hydroxypyridine (BrpyOH), respectively, in hot toluene. Compounds 1-3 are coordination dimers with a cyclo-RuORuO motif. By carrying out the reaction in hot methanol, the dinuclear complexes [Ru2(CO)4(μ-ClpyO)2(CH3OH)] (4) and [Ru2(CO)4(μ-BrpyO)2(CH3OH)] (5), respectively, were obtained. Treatment of 2 and 3 with triphenylphosphane provided the complexes [Ru2(CO)4(μ-ClpyO)2(PPh3)] (6) and [Ru2(CO)4(μ-BrpyO)2(PPh3)] (7), respectively. The solid-state structures of complexes 1, 2, 4, 6, and 7 were determined by single crystal X-ray diffraction. In all cases, a head-head coordination of the two 6-halopyridinolate ligands at the core was found. In all chlorine- or bromine-containing complexes, the axial coordination site at the ruthenium atom neighbored by two Cl or Br atoms remains unoccupied due to steric shielding by the halogen atom. In the fluoropyridinolate complex 1, the same coordination site is occupied by a carbonyl ligand.  相似文献   

19.
1:1 adducts of N,N′-bis(benzophenone)-1,2-diiminoethane (bz2en) with copper(I) chloride, bromide and iodide, [Cu(bz2en)2][CuX2] (X = Cl, Br, and I), have been synthesized and the structures of the solid bromide and iodide adducts were determined by X-ray crystallography from single-crystal data. The solid-state structure reveals ionic complexes containing a cation of copper(I) ion coordinated to four nitrogen atoms of two bz2en molecules (distorted tetrahedron) and a linear dibromocuprate(I) and a di-μ-iodo-diiododicuprate(I) anion for the bromo and iodo adducts, respectively. The bromo adduct structure contains CH?Br intermolecular hydrogen bonds. The complexes are very stable towards atmospheric oxygen in the solid state. The spectral properties of the above complexes are also discussed.  相似文献   

20.
Two series of complexes of the type [CoIII{(naph)2dien}(amine)]BPh4 {(naph)2dien = bis-(2-hydroxy-1-naphthaldimine)-N-diethylenetriamine dianion, and amine = piperidine (pprdn) (1), pyrrolidine (prldn) (2), pyridine (py) (3), N-methylimidazole (N-MeIm) (4)}, and [CoIII{(naph)2dpt}(amine)]BPh4 {(naph)2dpt = bis-(2-hydroxy-1-naphthaldimine)-N-dipropylenetriamine dianion, and amine = piperidine (pprdn) (5), 3-methylpyridine (3-Mepy) (6)} have been synthesized and characterized by elemental analyses, IR, UV-Vis, and 1H NMR spectroscopy. The crystal structures of (2) and (6) have been determined by X-ray diffraction. The redox potentials of the central cobalt ion show a relatively good correlation with the σ-donor ability of the axial ligands. The spectroscopic and electrochemical properties of these complexes are also influenced by the mutual steric hindrance between the pentadentate Schiff base and the ancillary ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号