首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bulky platinum triamine complex, [Pt(Me5dien)(NO3)]NO3 (Me5dien = N,N,N′,N′,N′′-pentamethyldiethylenetriamine) has been prepared and reacted in D2O with N-acetylmethionine (N-AcMet) and guanosine 5′-monophosphate (5′-GMP); the reactions have been studied using 1H NMR spectroscopy. Reaction with 5′-GMP leads to two rotamers of [Pt(Me5dien)(5′-GMP-N7)]+. Reaction with N-AcMet leads to formation of [Pt(Me5dien)(N-AcMet-S)]+. When a sample with equimolar mixtures of [Pt(Me5dien)(D2O)]2+, 5′-GMP, and N-AcMet was prepared, [Pt(Me5dien)(5′-GMP-N7)]+ was the dominant product observed throughout the reaction. This selectivity is the opposite of that observed for a similar reaction of [Pt(dien)(D2O)]2+ with 5′-GMP and N-AcMet. To our knowledge, this is the first report of a platinum(II) triamine complex that reacts substantially faster with 5′-GMP than with N-AcMet; the effect is most likely due to steric clashes between the methyl groups of the Me5dien ligand and the N-AcMet.  相似文献   

2.
The multinuclear (1H, 15N, 31P and 195Pt) NMR spectroscopies, ES-MS and HPLC have been employed to investigate the structure-activity relationship for the reactions between guanosine 5′-monophosphate (5′-GMP) and the platinum(II)-triamine complexes of the general formulation cis-[Pt(NH3)2(Am)Cl]NO3 (where Am represents a substituted pyridine). The order of reaction rate of the reactions was found to be: 3-phpy > 4-phpy > py > 4-mepy > 3-mepy > 2-mepy. The two basic factors, steric and electronic, were attributed to the order of the binding rate constants. A possible mechanism of the reaction of cis-[Pt(NH3)2(Am)Cl]+ with 5′-GMP suggested that the reactions proceed via direct nucleophilic attack and no loss of ammonia. cis-[Pt(NH3)2(Am)Cl]+ binds to the N7 nitrogen of the guanine residue of 5′-GMP to form a coordinate bond with the Pt metal centre. This mechanism is apparently different from that of cisplatin. The pKa value of cis-[Pt(NH3)2(4-mepy)(H2O)](NO3)2 (5.63) has been determined at 298 K by the use of distortionless enhancement by polarization transfer (DEPT) 15N NMR spectroscopy and compared to the pKa value of cis-[PtCl(H2O)(NH3)2]+.  相似文献   

3.
Reaction of benzisothiazolinone (Bit), a well-known biocide, with the Pd(II) and Pt(II) am(m)ine precursors cis-[Pd(en)(H2O)2](NO3)2 and cis-[Pt(NH3)2(H2O)2](NO3)2 yielded cis-Pd(en)(Bit−1H)2 and cis-Pt(NH3)2(Bit−1H)2, respectively. Bit is bound to the metal centres in both cases through the deprotonated isothiazolinone N. The crystal structures of a Bit/BitO co-crystal and cis-Pd(en)(Bit−1H)2·H2O are also described.  相似文献   

4.
The Pd(II) and Pt(II) complexes with triazolopyrimidine C-nucleosides L1 (5,7-dimethyl-3-(2′,3′,5′-tri-O-benzoyl-β-d-ribofuranosyl-s-triazolo)[4,3-a]pyrimidine), L2 (5,7-dimethyl-3-β-d-ribofuranosyl-s-triazolo[4,3-a]pyrimidine) and L3 (5,7-dimethyl[1,5-a]-s-triazolopyrimidine), [Pd(en)(L1)](NO3)2, [Pd(bpy)(L1)](NO3)2, cis-Pd(L3)2Cl2, [Pd2(L3)2Cl4] · H2O, cis-Pd(L2)2Cl2 and [Pt3(L1)2Cl6] were synthesized and characterized by elemental analysis and NMR spectroscopy. The structure of the [Pd2(L3)2Cl4] · H2O complex was established by X-ray crystallography. The two L3 ligands are found in a head to tail orientation, with a Pd?Pd distance of 3.1254(17) Å. L1 coordinates to Pd(II) through N8 and N1 forming polymeric structures. L2 coordinates to Pd(II) through N8 in acidic solutions (0.1 M HCl) forming complexes of cis-geometry. The Pd(II) coordination to L2 does not affect the sugar conformation probably due to the high stability of the C-C glycoside bond.  相似文献   

5.
A different approach developed for the preparation of palladium(II) based complexes [(Pd(bpy))x(L)y](NO3)2x is modelled by using 4-phenylpyridine as ligand (L = 1). Various solvent systems are inspected to optimize the reaction condition for the preparation of the model complex [Pd(bpy)(4-phenylpyridine)2](NO3)2. The model complex is obtained quantitatively as a single product from a 1:1:2 mixture of Pd(NO3)2, 2,2′-bipyridine and 4-phenylpyridine when stirred at room temperature in CH3CN:H2O (1:1). The same reaction is performed in CD3CN:D2O (1:1) to monitor the progress of the reaction by recording 1H NMR. The kinetic products that formed initially got self-healed to give the desired product with in 6 h. However, in DMSO-d6 spontaneous arrangement leading to the targeted complex was observed and no kinetic product could be detected. When a similar reaction is performed with ethylenediamine instead of 2,2′-bipyridine a mixture of compounds are observed. Theoretical calculation throws some light on the principle behind the success of this method for the bpy based systems. The assembly, [Pd(bpy)(4-phenylpyridine)2](NO3)2 has been characterised by NMR, ESI-MS and single-crystal X-ray diffraction methods.  相似文献   

6.
Two dinuclear palladium(II) complexes, [{Pd(en)Cl}2(μ-pz)](NO3)2 and [{Pd(en)Cl}2(μ-pydz)](NO3)2, have been synthesized and characterized by elemental microanalysis and spectroscopic (1H and 13C NMR, IR and UV–vis) techniques (en is ethylenediamine; pz is pyrazine and pydz is pyridazine). The square planar geometry of palladium(II) metal centers in these complexes has been predicted by DFT calculations. The chlorido complexes were converted into the corresponding aqua complexes, [{Pd(en)(H2O)}2(μ-pz)]4+ and [{Pd(en)(H2O)}2(μ-pydz)]4+, and their reactions with N-acetylated l-histidylglycine (Ac–l–His–Gly) and l-methionylglycine (Ac–l–Met–Gly) were studied by 1H NMR spectroscopy. The palladium(II)-aqua complexes and dipeptides were reacted in 1:1 M ratio, and all reactions performed in the pH range 2.0 < pH < 2.5 in D2O solvent and at 37 °C. In the reactions of these complexes with Ac–l–His–Gly and Ac–l–Met–Gly dipeptides, the hydrolysis of the amide bonds involving the carboxylic group of both histidine and methionine amino acids occurs. The catalytic activities of the palladium(II)-aqua complexes were compared with those previously reported in the literature for the analogues platinum(II)-aqua complexes, [{Pt(en)(H2O)}2(μ-pz)]4+ and [{Pt(en)(H2O)}2(μ-pydz)]4+.  相似文献   

7.
A series of four mononuclear manganese (II) complexes with the N-tridentate neutral ligands 2,2:6,2′′-terpyridine (terpy) and N,N-bis(2-pyridylmethyl)ethylamine (bpea) have been synthesized and crystallographically characterized. The complexes have five- to seven-coordinate manganese(II) ions depending on the additional ligands used. The [Mn(bpea)(Br)2] complex (1) has a five-coordinated manganese atom with a bipyramidal trigonal geometry, while [Mn(terpy)2](I)2 (2) is hexa-coordinated with a distorted octahedral geometry. Otherwise, the reactions of Mn(NO3)2 · 4H2O with terpy or bpea afforded novel seven-coordinate complexes [Mn(terpy)(NO3)2(H2O)] (3) and [Mn(bpea)(NO3)2] (4), respectively. 3 has a coordination polyhedron best described as a distorted pentagonal bipyramid geometry with one nitrate acting as a bidentate chelating ligand and the other nitrate as a monodentate one. 4 possesses a highly distorted polyhedron geometry with two bidentate chelating nitrate ligands. These complexes represent unusual examples of structurally characterized complexes with a coordination number seven for the Mn(II) ion and join a small family of nitrate complexes.  相似文献   

8.
The coordination behavior of Cp2Mo2+ towards the ribonucleosides and ribonucleoside monophosphates uridine, adenosine, cytidine, guanosine, 5′-UMP, 5′-AMP, 5′-CMP and 5′-GMP has been studied in solution in the range 4 ? pD ? 9 using NMR spectroscopy. The ribonucleosides were found to bind Cp2Mo2+ exclusively through the ribose moiety giving rise to the chelate complexes [Cp2Mo(urd-O2′,O3′)], [Cp2Mo(ade-O2′,O3′)], [Cp2Mo(cyd-O2′,O3′)], and [Cp2Mo(gua-O2′,O3′)]. The ribonucleotides form three types of complex with Cp2Mo2+ in neutral solution, namely N,PO-macrochelates, PO,O3′-coordinated species as well as O2′,O3′-chelates, while at pD 9 only sugar coordination is observed.  相似文献   

9.
In this paper, we report the synthesis and the characterization of a novel series of lanthanide (III) complexes with two potentially hexadentate ligands.The ligands contain a rigid phenanthroline moiety and two flexible hydrazonic arms with different donor atom sets (NNN′N′OO and NNN′N′N″N″, respectively for H2L1 (2,9-diformylphenanthroline)bis(benzoyl)hydrazone and H2L2 (2,9-diformylphenanthroline)bis(2-pyridyl)hydrazone).Both nitrate and acetate complexes of H2L1 with La, Eu, Gd, and Tb were prepared and fully characterized, and the X-ray crystal structure of the complex [Eu(HL1)(CH3 COO)2] · 5H2O is presented.The stability constants of the equilibria Ln3+ + H2L1 = [Ln(H2L1)]3+ and Ln3+ + (L1)2− = [Ln(L1)]+ (Ln = La(III), Eu(III), Gd(III), and Tb(III)) are determined by UV spectrophotometric titrations in DMSO at t = 25 °C. The nitrate complexes of H2L2 with La, Eu, Gd and Tb were also synthesized, and the X-ray crystal structures of [La(H2L2)(NO3)2(H2O)](NO3), [Eu(H2L2)(NO3)2](NO3) and [Tb(H2 L2)(NO3)2](NO3) are discussed.  相似文献   

10.
An investigation of the reaction of Pd(II) complexes with proflavine (3,6-diaminoacridine) resulted in the isolation of the compounds [Pd(terpy)(proflavine)](NO3)(HSO4)3H2O, 1, (terpy = 2,2′:6′,2″-terpyridine), [Pd(en)(proflavineH))](NO3)(SO4), 2, (en = ethylenediamine), and [Pd(proflavineH)Cl2](SO4)0.5H2O, 3. They have been isolated and characterized by NMR, IR, and electro-spray ionization mass spectrometry techniques and by elemental analyses. The proflavine was bonded to the Pd(II) through the endocyclic nitrogen in 1, but through the proflavine NH2 in 2. Compound 3 appeared to be polymeric in the solid state with a 1:1 mole ratio of Pd(II):proflavine. Upon solution of 3 in DMSO, two unique species were formed. In one species the Pd(II) was bonded to two proflavines through the endocyclic nitrogen (1:2 mole ratio) and in the other species, a Pd(II) was bonded to each NH2 group of a single proflavine (2:1 mole ratio). Molecular modeling of the equilibrium geometry by Spartan 8 produced structures which were consistent with the experimental data on the solutions of the three compounds. In vitro cytotoxicity testing against two breast cancer cell lines and one ovarian cancer cell line showed that compounds 1 and 3 had significant activity.  相似文献   

11.
Six transition-metal complexes, {[Co(4,4′-bipy)(H2O)4](Hbs)2 · 3H2O}n (1), [Mn(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (2), {[Mn(HCOO)(H2O)2(4,4′-bipy)]2[Mn(4,4′-bipy)(Hssal)2(H2O)2]}n (3), [Cd(4,4′-bipy)2(H2O)4](Hbs)2 · 2H2O (4), {[Cd3(CH3COO)4(4,4′-bipy)4](Hbs)2 · 10H2O}n (5), and {[Cd(HCOO)(H2O)2(4,4′-bipy)]2[Cd(4,4′-bipy)(Hssal)2(H2O)2]}n (6), have been synthesized by hydrothermal or reflux synthetic method and characterized by single-crystal X-ray diffraction, IR, elemental analysis, thermogravimetric analysis and fluorescence analysis, where Hssal2− is doubly deprotonated 5-sulfosalicylate, Hbs is 4-hydroxybenzenesulfonate and 4,4′-bipy is 4,4′-bipyridine. The structural analyses showed that all of the six complexes are cation-anion species containing in situ synthesized ligands, Hbs or HCOO, and the former arises from the decarboxylation of 5-sulfosalicylic acid under the hydrothermal conditions. The formate anions derived from the hydrolysis of DMF. A series of supramolecular compounds show that the structural diversity is strongly associated with their properties.  相似文献   

12.
The use of succinamic acid (H2sucm) in Cu(ClO4)2·6H2O/N,N′-donor [2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine (dmbpy), 4,4′-bipyridine (4,4′-bpy)] reaction mixtures yielded compounds [Cu2(Hsucm)3(bpy)2](ClO4)·0.5MeOH (1·0.5MeOH), [Cu2(Hsucm)(OH)(H2O)(bpy)](ClO4)2 (2), [Cu4(Hsucm)5(dmbpy)4]n(ClO4)3n·nH2O ·0.53nMeOH (3·nH2O·0.53nMeOH), [Cu2(Hsucm)2(dmbpy)2(H2O)2](ClO4)2·2H2O (4·2H2O), [Cu2(Hsucm)2(phen)2(H2O)2](ClO4)2·1.8MeOH (5·1.8MeOH), [Cu2(Hsucm)2(phen)2(MeOH)2](ClO4)2·MeOH (6·MeOH) and [Cu(Hsucm)2(H2O)(4,4′-bpy)]n (7). The succinamate(−1) ligand exists in five different coordination modes in the structures of 1-7, i.e. the common syn, syn μ2OO′ in 1-6, the μ22O in 1, the μ22OO′ in 1, the μ32O2O′ in 3, and the monodentate κO in 7. The primary amide group of Hsucm remains uncoordinated and participates in intra- and intermolecular hydrogen bonding interactions leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of representative complexes was monitored by TG/DTG and DTA measurements.  相似文献   

13.
《Inorganica chimica acta》2006,359(7):2271-2274
Two dinuclear nickel(II) complexes, [Ni2(L-Et)(N3)(H2O)3](NO3)2 · 2H2O (1) and [Ni2(L-Et)(μ-1,3-N3)(H2O)2](NO3)2 · 4H2O (2) containing (HL-Et = N,N,N′,N′-tetrakis[(1-ethyl-2-benzimidazolyl)methyl]-2-hydroxy-1,3-diaminopropane), have been synthesized and characterized by their IR and UV–Vis spectra and magnetic susceptibilities. The crystal structures of [Ni2(L-Et)(N3)(H2O)3](NO3)2 · CH3OH (1′) and [Ni2(L-Et)(μ-1,3-N3)(H2O)2](NO3)2 · 2C2H5OH (2′) similar to 1 and 2 were determined by X-ray crystallography. In 1′, the two nickel(II) ions are bridged by only an alkoxo group of L-Et, while an azido and an alkoxo connect two nickel(II) ions in 2′. Magnetic susceptibility measurements (2–300 K) showed a weak ferromagnetic exchange coupling between the two nickel(II) ions (2J = 10.1 cm−1) for 1. On the other hand, antiferromagnetic interactions were observed for 2 (2J = −15.8 cm−1).  相似文献   

14.
The synthesis and X-ray crystal structures of u-fac-[Ni(dien)2](NO3)2, s-fac-[Ni(dien)2](tos)2, fac-fac-[(H2O)(dien)Ni(μ-Cl)2(dien)(H2O)]Cl2, s-fac-[Ni(dien)2][ZnCl4], mer-[Ni(dien)2][CdCl4] · H2O, fac-[Ni(dien)(H2O)3](tos)2 · (H2O), mer-[Cu(dien)(H2O)](tos)2, fac-[Zn(dien)(H2O)2](tos)2 (dien = bis(2-aminoethyl)amine = diethylenetriamine; tos = p-toluenesulfonate) are described. The mode of binding of the tridentate amine is examined in detail.  相似文献   

15.
The aims of our program are to develop coordination complexes that can be used as selective probes, fluorescent agents and inorganic medicinal agents. In order to accomplish this, the design, synthesis, characterization and X-ray structure of new water-soluble monofunctional Pt(II) complexes with useful spectroscopic properties for assessing metal binding to biomolecules were investigated. Two diethylenetriamine (dien) derivatives, 2-(bis(2-aminoethyl)amino)acetic acid (acdien) and N′-[7-(acetamido)-4-(trifluoromethyl)coumarin]diethylenetriamine (atfcdien), were used. The latter was designed to allow the fluorophore group, 7-amino-4-(trifluoromethyl)coumarin (atfc), to be attached to metal centers through the dien moiety. 1H NMR spectroscopy and X-ray crystallography were employed to characterize the [Pt(atfcdien)Br][Pt(Me2SO)Br3] (8a) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR and fluorescence spectroscopic methods were used to characterize the [Pt(atfcdien)Br]Br (8b) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR studies of the monofunctional [Pt(acdien)Br]Br (9a) complex conducted to examine its interaction with guanosine 5′-monophosphate (5′-GMP) in D2O solutions revealed one downfield-shifted H8 and one downfield-shifted H1′ signal, consistent with 5′-GMP binding via N7 and fast rotation about the Pt-N7 bond.  相似文献   

16.
《Inorganica chimica acta》1988,152(2):101-106
The interaction of potassium tetrachloropalladate(II) with theophylline in a 1:1 molar ratio resulted in the formation of the monotheophylline (K[Pd(ThH)Cl3]) or monotheophyllinato ([Pd(Th)Cl]2) complexes, depending on the solvent and the acidity conditions. In the first complex, theophylline coordinates to Pd(II) as a neutral molecule through its N9 atom, while in the second as a monoanion through both its N7 and O6 atoms. Both complexes react with nucleosides, giving the complexes [Pd(Nucl)(ThH)Cl2] and [Pd(Nucl)(Th)Cl], respectively. Those complexes with one N(1)H ionizable imino-proton undergo deprotonation and two new series of mixed ligand complexes, [Pd(Nucl − H+)(ThH)Cl] and [Pd(Nucl − H+(Th)] are formed. In the mixed ligand complexes, theophylline maintains its coordination modes. The nucleosides, on the other hand, exhibit their usual coordination sites; i.e. in the nondeprotonated complexes they coordinate only through their N7 atoms, while in the deprotonated they act as bidentate through both their N7 and O6 atoms. All complexes were characterized with elemental analyses, conductivity measurements and various spectroscopic techniques.  相似文献   

17.
Divalent cobalt coordination polymers containing both ortho-phenylenediacetate (ophda) and rigid dipyridyl ligands 4,4′-bipyridine (bpy) or 1,2-bis(4-pyridyl)ethylene (dpee) display different topologies depending on carboxylate binding mode, tether length, and inclusion of charged species. [Co(ophda)(H2O)(dpee)]n (1) displays a common (4,4) grid layer motif. Use of the shorter bpy tether afforded {[Co2(ophda)2(bpy)3(H2O)2][Co(bpy)2(H2O)4](NO3)2·2bpy·7H2O}n (2) or [Co(ophda)(bpy)]n (3) depending on cobalt precursor. Compound 2 manifests 5-connected [Co2(ophda)2(bpy)3(H2O)2]n pillared bilayer slabs with rare 4862 SnS topology and entrained [Co(bpy)2(H2O)4]2+ complex cations. The 3-D coordination polymer 3 has an uncommon 4,6-connected binodal (4462)(446108) fsc topology, and shows ferromagnetic coupling (J = +1.5(2) cm−1) along 1-D spiro-fused [Co(OCO)2]n chain submotifs.  相似文献   

18.
1H NMR spectroscopy was applied to study the reactions of cis-[Pd(L)(H2O)2]2+ complexes (L is en, pic and dpa) with the N-acetylated tripeptides L-methionylglycylglycine, MeCOMet–Gly–Gly, and glycyl–L-methionyl–glycine, MeCOGly–Met–Gly. All reactions were performed in the pH range 2.0–2.5 with equimolar amounts of the cis-[Pd(L)(H2O)2]2+ complex and the tripeptide at 60 °C. The hydrolytic reactions of the cis-[Pd(en)(H2O)2]2+, cis-[Pd(pic)(H2O)2]2+ and cis-[Pd(dpa)(H2O)2]2+ complexes with MeCOMet–Gly–Gly were regioselective and only the amide bond involving the carboxylic group of methionine was cleaved. However, in the reactions of these three Pd(II) complexes with MeCOGly–Met–Gly, two amide bonds, Met–Gly and MeCO–Gly, were cleaved. From UV–Vis spectrophotometry studies, it was found that the rate-determining step of these hydrolytic reactions is the monodentate coordination of the corresponding Pd(II) complex to the sulfur atom of the methionine side chain. The rate of the cleavage of these amide bonds is dependent on the nature of the bidentate coordinated diamine ligand L (en > pic > dpa). The hydrolytic reaction of cis-[Pd(L)(H2O)2]2+-type complexes with MeCOMet–Gly–Gly, containing the methionine side chain in the terminal position of the peptide, is regioselective while in the reaction of these Pd(II) complexes with MeCOGly–Met–Gly, none selective cleavage of the peptide occurs. This study contributes to a better understanding of the selective cleavage of methionine-containing peptides employing palladium(II) complexes as catalysts.  相似文献   

19.
Polynuclear self-assembly molecules of general formula [{Pd(en)}x(ligand)y](NO3)2x (A) undergo ligand exchange reaction when heated in DMSO. A mixture of [Pdm(ligand)n](NO3)2m (B) and [Pd(en)2](NO3)2 (C) is generated in this process. The binuclear compound (A) containing a bidentate, non-chelating ligand 1,4-bis(4′-pyridylmethyl)-2,3,5,6-tetrafluorobenzene, is subjected to ligand exchange where upon the compound (A) remains in a dynamic equilibrium with the mixture of ensuing (B) and (C). Combination of separately prepared (B) and (C) also generates (A), thus equilibrium of (A) with (B) and (C) is again observed. We predict [{Pd(bpy)}x(ligand)y](NO3)2x (A′) where 2,2′-bipyridyl (bpy) is the cis-protecting group would not probably undergo ligand exchange. The idea was conceived from the fact that (bpy) is more rigid compared to (en) moreover one of the expected products in the event of ligand exchange [Pd(bpy)2](NO3)2 (C′) is not really very stable unlike (C). In fact, when (A′) is heated in DMSO no ligand exchange is observed at all. More interestingly combination of (B) and (C′) generated (A′) smoothly. Mononuclear complexes obtained from the ligand 4-phenylpyridine are also used for similar study for comparison. It is suggested that (bpy) could serve as a better cis-protecting group for Pd(II)-based self-assembly coordination cage compounds particularly when dissolution of the assemblies in polar solvents and heating of the resultant solution is required.  相似文献   

20.
Three ruthenium polypyridyl compounds of structural formula [Ru(apy)(tpy)Ln](ClO4)(2−n) (apy = 2,2′-azobispyridine; tpy = 2,2′:6′,2″-terpyridine; L = Cl, H2O, CH3CN) (1a-c) were synthesized and crystallized. These complexes were fully characterized by means of 1D and 2D 1H NMR spectroscopy, as well as mass spectrometry and elemental analysis. Although in theory two isomers are possible, i.e. the one in which the central N atom in tpy is trans to the azo N in apy and the one in which the former is trans to the pyridine N in apy, in all cases only the latter was observed. The molecular structures of the compounds were elucidated by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号