首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new zincophosphites [C6H14N2]0.5[Zn(H2PO3)2] 1 and [C4H12N2]0.5[(CH3)2NH2][Zn2(HPO3)3] 2 have been solvothermally synthesized in mixed solvents of N,N-dimethylformamide (DMF) and 1,4-dioxane (DOA), respectively. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a neutral inorganic chain formed by ZnO4 and HPO2(OH) units. Interestingly, the left- and right-handed hydrogen-bonded helical chains are alternately formed via the hydrogen-bonds between two adjacent chains. Compound 2 exhibits a layer structure with 4- and 12-MRs formed by ZnO4 and HPO3 units, in which two kinds of organic amine molecules both act as countercations to compensate the overall negative electrostatic charge of the anionic network.  相似文献   

2.
Subsequent addition of 1,2-benzenedithiol (S2-H2) and nBuLi to a solution of [Ru(NO)Cl3 · xMeOH] in THF afforded exclusively the monomeric species NBu4[RuII(NO)(S2)2] (1). Formation of dimeric (NBu4)2[RuII(NO)(S2)2]2 (2) has been confirmed when the deprotonated ligand S2-Li2 was added to [Ru(NO)Cl3 · xMeOH] and allowed to stir for 30 h. The monomer 1 undergoes aerial oxidation to give (NBu4)2[RuIV(S2)3] (3). The reaction between RuCl3 · xH2O and S2-H2 in the presence of NaOMe, afforded the dinulear RuIII species (NMe4)2[RuIII(S2)2]2 (4). A modified method for the preparation of 1 is being employed to synthesize the osmium analogue NBu4[Os(NO)(S2)2] (5) effectively. The solid state structures of 1, 2 and 3 were determined by X-ray crystal structure analysis. A comparison of relevant bond distance data suggests that 1,2-benzenedithiolate acts as an “innocent” ligand.  相似文献   

3.
Reaction of tetrathiafulvalene carboxylic acid (TTFCO2H) with paddlewheel dirhodium complex Rh2(ButCO2)4 yielded TTFCO2-bridged complexes Rh2(ButCO2)3(TTFCO2) (1) and cis- and trans-Rh2(ButCO2)2(TTFCO2)2 (cis- and trans-2). Their triethylamine adducts [1(NEt3)2] and cis-[2(NEt3)2] were purified and isolated with chromatographic separation, and characterized with single crystal X-ray analysis. Trans-[2(NEt3)2] is not completely separated from a mixture of cis- and trans-[2(NEt3)2], but its single crystals were obtained from a solution of the mixture. A three-step quasi-reversible oxidation process was observed for 1 in MeCN. The first two steps correspond to the oxidation of the TTFCO2 moiety and the last one is the oxidation of the Rh2 core. The oxidation of cis-2 is observed as a two-step process with very similar E1/2 values to those of the first two processes for 1. Both 1+ and cis-22+ in MeCN at room temperature show isotropic ESR spectra with a g value of 2.008 and aH = 0.135 mT for two equivalent H atoms and aH = 0.068 mT for one H atom. The redox and ESR data of cis-2 suggest that the intramolecular interaction between the TTF moieties is very small.  相似文献   

4.
A series of flexible dithioethyl ligands that contain ethyleneoxy segments were designed and synthesized, including bis(2-(pyridin-2-ylthio)ethyl)ether (L1), 1,2-bis(2-(pyridin-2-ylthio)ethoxy)ethane (L2), bis(2-(benzothiazol-2-ylthio)ethyl)ether (L3) and 1,2-bis(2-(benzothiazol-2-ylthio)ethoxy)ethane (L4). Reactions of these ligands with AgNO3 led to the formation of four new supramolecular coordination complexes, [Ag2L1(NO3)2]2 (1), [Ag2L2(NO3)2] (2), [AgL3(NO3)] (3) and [AgL4(NO3)] (4) in which the length of the (CH2CH2O)n spacers and the terminal groups of ligands cause subtle geometrical differences. Studies of the inhibitory effect to the growth of Phaeodactylum tricornutum show that all four complexes are active and the compound 4 has the highest inhibitory activity.  相似文献   

5.
Three new o-thioetherphenol ligands have been synthesized: 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)ethane (H2bse), 1,2-bis(3,5-di-tert-butyl-2-hydroxyphenylsulfanyl)benzene (H2bsb), and 4,6-di-tert-butyl-2-phenylsulfanylphenol (Hpsp). Their complexes with copper(II) were prepared and investigated by UV-Vis-, EPR-spectroscopy; their electro- and magnetochemistry have also been studied: [CuII(psp)2] (1), [CuII2(bse)2] (2), [CuII2(bsb)2] (3), [CuII(bsb)(py)2] (4). The crystal structures of the ligands H2bse, H2bsb, Hpsp and of the complexes 1, 2, 3, 4 have been determined by X-ray crystallography.  相似文献   

6.
A synthetic and mechanistic study is reported on ligand substitution and other reactions of six-coordinate ruthenium(II) carbonyl complexes containing tridentate PhP(CH2CH2CH2PCy2)2 (Cyttp). Carbonylation of cis-mer-Ru(OSO2CF3)2(CO)(Cyttp) (1) affords [cis-mer-Ru(OSO2CF3)(CO)2(Cyttp)]O3SCF3 (2(O3SCF3)) and, on longer reaction times, [cis-mer-Ru(solvent)(CO)2(Cyttp)](O3SCF3)2 (solvent = acetone, THF, methanol). 2(O3SCF3) reacts with each of NaF, LiCl, LiBr, NaI, and LiHBEt3 to yield [cis-mer-RuX(CO)2(Cyttp)]+ (X = F (3), Cl (4), Br (5), I (6), H (7)), isolated as 3-7(BPh4). These conversions proceed with high stereospecificity to afford only a single isomer of the product that is assigned a structure in which the Ph group of Cyttp points toward the CO trans to X (anti when X = F, Cl, Br, or I; syn when X = H). Treatment of 2(O3SCF3) with NaOMe and CO generates the methoxycarbonyl complex [cis-mer-Ru(CO2Me)(CO)2(Cyttp)]+ (8), whereas addition of excess n-BuLi to 2(O3SCF3) in THF under CO affords mer-Ru(CO)2(Cyttp) (9). The two 13C isotopomers [cis-mer-Ru(OSO2CF3)(CO)(13CO)(Cyttp)]O3SCF3 (2′(O3SCF3): 13CO trans to PC; 2″(O3SCF3): 13CO cis to all P donors) were synthesized by appropriate adaptations of known transformations and used in mechanistic studies of reactions with each of LiHBEt3, NaOMe/CO, and n-BuLi. Whereas LiHBEt3 reacts with 2′(O3SCF3) and 2″(O3SCF3) to replace triflate by hydride without any scrambling of the carbonyl ligands, the corresponding reactions of NaOMe-CO are more complex. The methoxide combines with the CO cis to triflate in 2, and the resultant methoxycarbonyl ligand ends up positioned trans to the incoming CO in 8. A mechanism is proposed for this transformation. Finally, treatment of either 2′(O3SCF3) or 2″(O3SCF3) with an excess of n-BuLi leads to the formation of the same two ruthenium(0) isomers of mer-Ru(CO)(13CO)(Cyttp). These products represent, to our knowledge, the first example of a syn-anti pair of isomers of a five-coordinate metal complex.  相似文献   

7.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

8.
The preparation, crystal structures and magnetic properties of three copper(II) compounds of formulae [Cu2(dmphen)2(dca)4] (1), [Cu(dmphen)(dca)(NO3)]n (2) and [Cu(4,4-dmbpy)(H2O)(dca)2] (3) (dmphen=2,9-dimethyl-1,10-phenanthroline, dca=dicyanamide and 4,4-dmbpy=4,4-dimethyl-2,2-bipyridine) are reported. The structure of 1 consists of discrete copper(II) dinuclear units with double end-to-end dca bridges whereas that of 2 is made up of neutral uniform copper(II) chains with a single symmetrical end-to-end dca bridge. Each copper atom in 1 and 2 is in a distorted square pyramidal environment: two (1) or one (2) nitrile-nitrogen atoms from bridging dca groups, one of the nitrogen atoms of the dmphen molecule (1 and 2) and either one nitrile-nitrogen from a terminal dca ligand (1) or a nitrate-oxygen atom (2) build the equatorial plane whereas the second nitrogen atom of the heterocyclic dmphen fills the axial position (1 and 2). The copper-copper separations through double (1) and single (2) end-to-end dca bridges are 7.1337(7) (1) and 7.6617(7) (2). Compound 3 is a mononuclear copper(II) complex whose structure contains two neutral and crystallographically independent [Cu(4,4-dmbpy)(H2O)(dca)2] molecules which are packed in two different layer arrangements running parallel to the bc-plane and alternating along the a-axis. The copper atoms in both molecules have slightly distorted square pyramidal surroundings with the two nitrogen atoms of the 4,4-dmbpy ligand and two dca nitrile-nitrogen atoms in the basal plane and a water oxygen in the apical position. A semi co-ordinated dca nitrile-nitrogen from a neighbour unit [2.952(6) Å for Cu(2)-N] is in trans position to the apical water molecule in one of the two molecules, this feature representing part of the difference in supramolecular connections in the alternating layers referred to above. Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K reveal the occurrence of weak antiferromagnetic interactions through double [J=−3.3 cm−1 (1), ] and single [J=−0.57 cm−1 (2), ] dca bridges and across intermolecular contacts [θ=−0.07 K (3)].  相似文献   

9.
Molybdenum tetramers: Mo43-O)4[μ-O2P(CH2Cl)2]4O4 (1), Mo43-O)4(μ-O2P(CH2OH)2)4O4 (2), Mo43-O)4[μ-O2P(PhOMe)2]4O4 (3), and Mo43-O)4[μ-O2P(o-C6H4(CH2)2)]4O4 (4) have been synthesized and characterized by IR, UV-Vis, and 31P NMR spectroscopy. Molybdenum tetramers 1 and 4 along with the ligands L2A and L4 were structurally characterized by single crystal X-ray crystallography. An infinite 2D polymeric sheet was formed via inter and intra hydrogen bonds in the crystals of L2A. The crystals of L4 consist of infinite polymeric chains formed through hydrogen bonding. All molybdenum tetramers were tested as catalysts for the epoxidation of cis-cyclooctene in the presence of H2O2. Compounds 1 and 2 resulted in more than 80% epoxide after 24 hours at 70 °C, and displayed superior catalytic activities over compounds 3 and 4 under identical conditions. The superior catalytic activities of compounds 1 and 2 may be attributed to their better solubility in the ethanol/H2O2 system.  相似文献   

10.
Two new complexes, {[MnAu2(CN)4(NITpPy)2(H2O)2]}n (1) and {[Co(N(CN)2)2(NITpPy)2(H2O)2]}n (2), have been synthesized and characterized. The single-crystal X-ray analysis for the complexes 1 and 2 demonstrates that each M(II) (M = Mn or Co) ion assumes a distorted octahedral MN4O2 coordination polyhedron. Four nitrogen atoms come from the cyanide groups and the pyridyl rings in a common plane, and two oxygen atoms come from the H2O molecules in trans-positions. The structures of complexes 1 and 2 illustrate that aurophilicity and/or hydrogen bonding interactions play important roles in increasing dimensionality. Magnetic investigations on complexes 1 and 2 show the presence of weak antiferromagnetic interactions.  相似文献   

11.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

12.
An achiral coordination polymer, [Ag2(D-his)(L-his)]n, DL-1 (Hhis = histidine), was prepared by slow diffusion of two aqueous solutions of chiral complexes, {[Ag(D-his)]2}n (D-2) and {[Ag(L-his)]2}n (L-2).1 The crystal structure of DL-1 consists of a linkage of meso-form dimer units through two kinds of Ag?Ag contacts. Crystals of the achiral silver(I) histidinate complex DL-1 exhibited different self-assembly from those of chiral helical polymers (D-3 and L-3). The formation of DL-1 from the two aqueous solutions indicated that ligand exchange around silver(I) atoms took place in water. The antimicrobial activities of DL-1 against selected bacteria, yeasts and molds were evaluated by minimum inhibitory concentration (MIC).  相似文献   

13.
The crystal structures of four Ag(I) and Hg(II) complexes of the ligand 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH) have been described, that is, [Hg2(N-BBzBimCH)Cl4] (1), [Hg(N-BBzBimCH)Br2] (2), [Ag(N-BBzBimCH)](NO3)(H2O) (3) and [Ag2(N-BBzBimCH)(CF3OCO)2] (4). All these compounds show 1D polymeric structures in the solid state. In complexes 1 and 4, the chloride ions and the trifluoroacetate groups bridge the [Hg2(N-BBzBimCH)Cl2] and [Ag2(N-BBzBimCH)] fragments, respectively, to generate 1D polymers. While the bromide ions in complex 2 and nitrate groups in complex 3 are only serving as terminal ligands to suffice the coordination geometry of the metal centers. In all cases, weak intermolecular interactions such as C-H?X (X = Cl, Br) contacts, hydrogen bonds, π-π interactions and C-H?π stacking play important roles to extend the 1D chain structures to 2D network. Solid state fluorescence of these compounds was also studied.  相似文献   

14.
Two novel complexes [Cu(DBA)2(1,10-phen)]n (1) and [Cd(DBA)2(1,10-phen)2] (2) [HDBA = benzilic acid: (C6H5)2C(OH)COOH] have been synthesized and characterized by element analysis and fluorescence spectroscopy. The crystal structures of compounds 1, 2 and HDBA (3) were also determined. Complex 1 is a one-dimensional (1D) helical infinite chain, in which [(1,10)-phen]Cu(II) units were bridged by benzilic acid. Complex 2 is a mononuclear structure, and is self-assembled through π-π stacking interactions to form a 1D helical chain. Compound 3 is self-assembled to form a 1D helical chain through hydrogen bonds interactions. Thermal analyses indicate that complexes 1 and 2 are stable under 200 and 254 °C in solid state, respectively.  相似文献   

15.
The new aryl phosphinites PPh2OR (R = 2,4,6-Me3C6H2, 1; R = 2,6-Ph2C6H3, 2) have been prepared from chlorodiphenylphosphine and the corresponding phenols. In these ligands, the ortho-positions of the aromatic phosphite function are blocked by methyl and phenyl substituents, which allows coordination to metal centres without ortho-metallation. Thus, reaction with [PdCl2(cod)] leads to the complexes trans-[PdCl2(PPh2OR)2] (R = 2,4,6-Me3C6H2, 3; R = 2,6-Ph2C6H3, 4), while the reaction with [Rh2(CO)4Cl2] gives trans-[Rh(CO)Cl(PPh2OR)2] (R = 2,4,6-Me3C6H2, 5; R = 2,6-Ph2C6H3, 6). The single-crystal X-ray structure analyses of 3 and 5 confirm the trans-coordination of the new ligands in these square-planar complexes.  相似文献   

16.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

17.
In search for new conglomerates, seven stereochemically labile complexes between MCl2 (M = Co, Cu, Ni, Zn) and bidentate ligands, the commercially available N,N,N′-trimethylethane-1,2-diamine (trimeda) and the somewhat bulkier N-isopropyl-N,N′,N′-trimethylethane-1,2-diamine (itmeda), have been synthesized and characterized using single crystal X-ray diffraction. The trimeda and itmeda ligands exhibit chirogenic nitrogen centers and may form chiral metal complexes that are candidates for total spontaneous resolution. Copper(II) chloride forms the dimeric meso complexes [{CuCl2(trimeda)}2] (1) and [{CuCl2(itmeda)}2] (2), while [CoCl2(trimeda)2] (3) and [NiCl2(trimeda)2] (4) exhibit six-coordinate but chiral (R,R)- and (S,S)-complexes. Three examples of the chiral target complex, comprising four-coordinate stereochemically labile monomers, was successfully prepared, viz. [NiCl2(itmeda)] (5), [ZnCl2(itmeda)] (6), and [CoCl2(itmeda)] (7).In all seven complexes, the λ-conformation of the five-membered trimeda-metal chelate ring corresponds to the (S)-configuration at nitrogen, and vice versa. Supramolecular interactions in 3 and 4 form hydrogen-bonded heterochiral ribbons. However, crystals of 5-7 display homochiral interactions resulting in polar phases. Weak CH-Cl interactions in 5 and 6 form homochiral layers. In 7, interactions form homochiral helices along the a-axis.  相似文献   

18.
The reaction of pyridine-2-thiol with AgBF4 and AgClO4 in MeCN gave rise to polymeric compounds [{Ag(HPyS)2}2(BF4)2]n (1) and [{Ag(HPyS)2}2(ClO4)2]n (2) (HPyS=pyridine-2-thione), respectively, while the similar reaction of pyridine-2-thiol with AgNO3 resulted in a polymeric compound [{Ag4(HPyS)6}(NO3)4]n (3). X-ray single-crystal diffraction analyses showed that the cations of both 1 and 2 possess a single-metal-atom chain structure but that of 3 is a double-metal-atom chain structure. The difference between 1 (or 2) and 3 showed counterion effect in polymerization of silver-thione compounds. In the presence of water, the treatment of pyridine-2-thiol with AgBF4 in DMF at 0 °C generated a polymeric compound [Ag(SPy)]n (4) (Spy=pyridine-2-thiolate) with graphite-like layered array of silver ions. Compound 4 can convert into its isomer [Ag6(SPy)6]n (5) through soaking in DMF for 1 month. However, the similar reaction of pyridine-2-thiol with AgBF4 in MeCN-H2O (v:v=40:1) at room temperature gave another layered polymeric compound [{Ag5(Spy)4(HPyS)}BF4]n (6). The preparation of 4, 5, and 6 showed that temperature and solvent exert influence on formation of silver-thiolate polymers. The reaction of AgNO3 with K2i-mnt (i-mnt=2,2-dicyanoethene-1,1,-dithiolate) and pyridine-2-thiol gave a polymer [Ag44-i-mnt)2(μ-HPyS)2(μ-HPyS)4/2]n (7) with one-dimensional (1-D) chain structure consisting of Ag4 square planar cluster units linked by 1H-pyridine-2-thione ligand. The treatment of AgNO3 with NaS2CNEt2 and pyridine-2-thiol in DMF resulted in another polymeric compound [Ag43-S2CNEt2)22-SPy)4/2]n (8). The preparation and characterization of these polymeric compounds demonstrated that polymerization of silver(I)-thione and silver(I)-thiolate complexes is tunable through controlling reaction conditions. Semiconducting property studies of 1-8 demonstrated that the electrical conductivity of 4 is 2.04×10−5 S cm−1 at 25 °C and increases as temperature rises, and those of 1-3 and 5-8 are in the range of 1×10−12-1×10−15 S cm−1 at room temperature and independent on the temperature, indicating that 1 is a semiconductor and the others are insulators.  相似文献   

19.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

20.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RNHC(S)NHP(S)(OiPr)2 [R = pyridin-2-yl (HLa), pyridin-3-yl (HLb), 6-amino-pyridin-2-yl (HLc)] with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to mononuclear [Cu(PPh3)2La,b-S,S′] (1, 2) and [Cu(PPh3)Lc-S,S′] (3) complexes. Using copper(I) iodide instead of Cu(PPh3)3I, polynuclear complexes [Cun(L-S,S′)n] (4-6) were obtained. The structures of these compounds were investigated by IR, 1H, 31P{1H} NMR spectroscopy, ES-MS and elemental analyses. The crystal structures of Cu(PPh3)2Lb (2) and Cu(PPh3)Lc (3) were determined by single-crystal X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号