首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new linear and V-shaped tetradentate ligands, namely 1,4-bis(2-hexahydropyrimidyl)benzene (L) and 1,3-bis(2-hexahydropyrimidyl)benzene (L), and their silver(I) complexes, [Ag2L(μ-ONO2)](NO3) · 2H2O (1), [Ag2L(μ-pn)](NO3)2 (2), [Ag2L(μ-pn)](ClO4)2 (3) and [Ag4L2(H2O)](NO3)4 · 5H2O (4) (pn=1,3-diaminopropane) have been synthesized in situ and structurally characterized by single-crystal X-ray diffraction. 1 and 2 were obtained from the same reaction solution but different crystallization conditions. 1 is an one-dimensional chain featuring cuboid tetranuclear silver(I) units interconnected through monoatomic nitrate bridges. Both 2 and 3 are ribbon-like helical compounds in which each L ligand acts in a tetradentate bridging mode to interconnect four metal atoms, and each pn ligand functions in a bidentate bridging mode to link a pair of metal atoms. 4 shows a truncated square-pyramidal tetranuclear motif arose by the V-shaped L ligand. Close Ag?Ag separations (2.901-2.939 Å) assisted by bis(hexahydropyrimidine) bridges were observed in 1 and 4, indicating metal-metal interactions. Photoluminescence of 1-4 has also been observed in the solid state and solution at room temperature and low temperature, respectively.  相似文献   

2.
The reactions of 4-aminobenzoic acid (4-abaH), 4,4′-bipyridine (4,4′-bipy) and transitional metal ions (ZnII, MnII and CuII) gave rise to four supramolecular architectures, namely, [(4-abaH)2(4,4′-bipy)] (1), {[Zn2(4,4′-bipy)2(4-aba)4] (H2O)5}n (2), {[Mn(4,4′-bipy)2(H2O)4] (4-aba)Br(H2O)3} (3) and {[Cu2(4,4′-bipy)3(H2O)2(4-aba)2](NO3)2(H2O)4}n (4). Their crystal structures were determined by X-ray diffraction and show different structural motifs. 1 is a one-dimensional hydrogen bonding ladder constructed by 4-abaH and 4,4′-bipy. In 2, 4,4′-bipy bridges Zn(4-aba)2 units forming a one-dimensional zigzag chain, which is extended into a three-dimensional framework by crystalline water molecules through hydrogen bonding interactions. Three-dimensional network of 3 is constructed by mononuclear [Mn(4,4′-bipy)2(H2O)4]2+ cations, neutral crystalline water molecules, and 4-aba and Br anions through extensive hydrogen bonding and π-π interactions. However, one-dimensional ladder formed by 4,4′-bipy and Cu(4-aba) units in 4 is extended into a three-dimensional architecture through interpenetration of the lateral 4-aba arms into squares of the adjacent Cu-(4,4′-bipy) ladders and extensive hydrogen bonding interactions.  相似文献   

3.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

4.
Six new complexes, [Cu4I4(PPh2Cy)4]·2H2O (1), [CuI(PPhCy2)2] (2), [CuCl(PPhCy2)2] (3), and [CuBr(PPh3)3]·CH3CN (4), [Ag(PPhCy2)2(NO3)] (5), [Ag(PCy3)(NO3)]2 (6) [where Ph = phenyl, Cy = cyclohexyl], have been synthesized and structurally characterized by X-ray diffraction, IR absorption spectra and NMR spectroscopic studies (except complex 4). The X-ray diffraction analysis of complex (1), pseudo polymorph of complex [Cu4I4(PPh2Cy)4], reveals a stella quadrangula structure. The four corners of the cube are occupied by copper(I) atoms and four I atoms are present at the alternative corners of the cube, further more the copper(I) atoms are coordinated to a monodentate tertiary phosphine. Complexes (2) and (3) are isostructural with trigonal planar geometry around the copper(I) atom. The crystal structure of complex (4) is a pseudo polymorph of complex [CuBr(PPh3)3] and the geometrical environment around the copper(I) centre is distorted tetrahedral. In the AgI complexes (5) and (6), the central metal atoms have pseudo tetrahedral and trigonal planar geometry, respectively. Spectroscopic and microanalysis results are consistent with the single crystal X-ray diffraction studies.  相似文献   

5.
The crystal structures of two 1:1 ligand-silver(I) cyanide complexes, [Ag(CN)(en)] (en = ethane-1,2-diamine) (1) and [Ag(CN)(pn)] (pn = propane-1,2-diamine) (2), and of two 2:1 ligand-silver(I) cyanide compounds, [(AgCN)2 · tn] (tn = propane-1,3-diamine) (3) and [(AgCN)2 · bn] (bn = butane-1,4-diamine) (4), were determined from single-crystal X-ray diffraction data, collected at 173 K. In 1 and 2, mononuclear AgCN complexes are formed, in which silver(I) is coordinated by one cyanide and one chelating alkanediamine donor ligand. However, in the dinuclear adducts of 3 and 4, two AgCN units are connected by one alkane-1,n-diamine bridging ligand (n = 3, 4). The resulting molecules of 1-4 are cross-linked via N-H?N hydrogen bonds. Apart from these intermolecular contacts, comparatively short Ag(I)-Ag(I) distances of 3.182(1) Å (in 1), 3.267(1) Å (in 2), 3.023(2) Å (in 3) and 3.050(2) Å (in 4) occur.  相似文献   

6.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

7.
Polydentate nitrogen heterocycle ligand 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) reacted with M(NO3)x (M = Ag, x = 1; M = Cd, x = 2) to give two new complexes [Ag(2,3-dpp)(NO3)]2 (1) and [Cd(2,3-dpp)(NO3)2]n (2). Both complexes have been characterized by single-crystal X-ray diffraction, elemental analyses, IR and 1H NMR spectroscopy. Single-crystal X-ray analyses showed that complex 1 crystallized in monoclinic, space group P21/n is a dimmer containing penta-coordinated Ag+ ion. While compound 2 has 1D chain-like structure with repeat unit Cd(2,3-dpp)(NO3)2, in which the Cd(II) presents octa-coordinated N4O4 donor set with two four-membered chelating rings and two five-membered chelating rings around Cd(II) ion. Meanwhile, every neutral chain [Cd(2,3-dpp)(NO3)2]n is mutually connected by face-to-face π?π packing interactions to form a two dimensional layer. Furthermore, antibacterial activities of compound 1 and luminescent property of the compound 2 are also investigated.  相似文献   

8.
A series of flexible dithioethyl ligands that contain ethyleneoxy segments were designed and synthesized, including bis(2-(pyridin-2-ylthio)ethyl)ether (L1), 1,2-bis(2-(pyridin-2-ylthio)ethoxy)ethane (L2), bis(2-(benzothiazol-2-ylthio)ethyl)ether (L3) and 1,2-bis(2-(benzothiazol-2-ylthio)ethoxy)ethane (L4). Reactions of these ligands with AgNO3 led to the formation of four new supramolecular coordination complexes, [Ag2L1(NO3)2]2 (1), [Ag2L2(NO3)2] (2), [AgL3(NO3)] (3) and [AgL4(NO3)] (4) in which the length of the (CH2CH2O)n spacers and the terminal groups of ligands cause subtle geometrical differences. Studies of the inhibitory effect to the growth of Phaeodactylum tricornutum show that all four complexes are active and the compound 4 has the highest inhibitory activity.  相似文献   

9.
Schiff bases L1-L5 {N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L1), 3-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L2), 3-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L3), 4-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L4), 4-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L5)} were synthesized and on reaction with Co(NO3)2·6H2O, complexes having the molecular formulae [Co(L1O)2]NO3 (1), [Co(L2O)2]NO3·xH2O (2a, x = 2; 2b, x = 3), [Co(L3O)2]NO3 (3), [Co(L4O)2]NO3·4H2O (4), [Co(L5O)2]NO3 (5) were isolated from the respective imines. The salt [Co(L2O)2]PF6 (2c) was obtained by treating 2 with KPF6. Complexes 1-5 were formed as a result of addition of a water molecule across the imine function and the resultant alcohol binds in its deprotonated form. The alcoholate ion remained bound in a facial tridentate fashion to the low-spin cobalt(III). X-ray crystal structure determination confirmed the presence of trans-trans-trans-NANPO (A = aminopyridyl and P = pyridyl) disposition in 2a and cis-cis-trans-NANPO in 2b, 2c and 4. Water dimers in 2a, 2b, 4 and water-nitrate ion network in 2a were other notable features.  相似文献   

10.
The self-assembly reaction of the flexible ligand 1,2-bis(1,2,4-triazol-4-yl)ethane (btre) and Ag salts with BF4, SO42−, NO3 and ClO4 gives novel coordination polymers {[Ag(btre)2](BF4)}n (1), {[Ag2(btre)1.5(H2O)](SO4)·5H2O}n (2), {[Ag(btre)](NO3)·H2O}n (3) and {[Ag(btre)](ClO4)}n (4). The structure of 1 is a one-dimensional double chain through double bis-monodentate btre bridges. Compound 2 is a novel two-dimensional network containing the Ag4 unit node and μ4-btre building block. In 3 and 4, adjacent two silver(I) atoms are linked through four nitrogen atoms of two N1/N2 atoms of two btre ligands and form Ag2N4 6-membered rings and construct a one-dimensional chain. The chains extends through btre bridges in four different directions alternatively to construct a novel three-dimensional network. The luminescences of 1-4 were observed in the solid state at room temperature. Compounds 3 and 4 are inversely transfered by the anion exchange procedure.  相似文献   

11.
Three new silver(I) complexes of 5,5-diethlybarbiturate (barb), [Ag(barb)(apy)]·H2O (1), {[Ag(μ-ampy)][Ag(μ-barb)2]}n (2) and [Ag(barb)(dmamhpy)] (3) [apy = 2-aminopyridine, ampy = 2-aminomethylpyridine and dmamhpy = 2-(dimethylaminomethyl)-3-hydroxypyridine] have been synthesized and characterized by elemental analysis and FT-IR. Single crystal X-ray diffraction analyses showed that complexes 1 and 3 are mononuclear. In 1, the silver(I) ion is linearly coordinated by a barb anion and a ampy ligand, while a bidentate dmamhpy ligand together with an N-coordinated barb anion forms a trigonal coordination geometry around silver(I) in 3. Complex 2 is a one-dimensional coordination polymer in which silver(I) ions are bridged by ampy ligands, leading to a cationic chain . The [Ag(barb)2] units contains two N-bonded barb ligands, bridging the silver centers in the cationic and anionic units via the carbonyl O atoms. Thus, complex 2 contains two-coordinated and four-coordinated silver ions. All complexes display hydrogen-bonded network structures and exhibit appreciable fluorescence at room temperature. Thermal analysis (TG-DTA) data are in agreement with the structures of the complexes.  相似文献   

12.
The reaction of 1,3-bis(4,5-dihydro-1H-imidazol-2-yl)benzene (bib) ligand with silver(I) nitrate in a 1:1 molar ratio generated a [2 + 2] metallocyclic complex [Ag2(bib)2](NO3)2 · 2H2O, in which bib ligand displayed in cis configuration. When the additional competing ligands/counterions, such as oxlate salt, 1,2-diaminoethene (en), 1,3-diaminopropane (pn), and were introduced, respectively, to the above-mentioned reaction solution, ring-open polymerization of sliver(I) complexes {[Ag(bib)]NO3 · H2O}n (1), {[Ag(bib)2]X}n ( (2), (3)), {[Ag2(bib)2(NO2)](NO2) · 19/8H2O}n (4) and {[Ag2(bib)2](V4O12)0.5 · 3H2O · 2MeCN}n (5) were generated. In compounds 1, 4 and 5, bib ligand adopts trans configuration and twists around the Ag-Ag axis, giving rise to single-stranded helical structure with short adjacent Ag?Ag distances of 3.56, 3.56, 3.50 and 3.63 Å, respectively. Compounds 2 and 3 are 1D coordination polymers fusing the [2 + 2] metallocycle [Ag2(bib)2]2+, in which bib ligand exhibits in cis configuration and the metallocycles have longer Ag?Ag distances of 8.52 Å in 2 and 8.61 Å in 3 along with the strong intracyclicπ-π interactions between phenyl groups. Cis and trans configurations of bib coexist in solution and crystallize in complexes 1 and 2 in the solid state in the presence of en or pn. The solution of 1 and 2 can be converted into 3 via the addition of the bulky counter anion or into 4 through introduction of the competing ligand/conuterion .  相似文献   

13.
The ligands bis-(imidazolium) hexafluorophosphate (Himy = -C3N2H3-, imidazolium; R = 1-naphthylmethylene, 1a; 9-anthracenylmethylene, 1b) with an oxoether chain were easily prepared by the reaction of substituted imidazole with the diglycol diiodide, followed by exchange of anions with . 1a and 1b reacted with Ag2O in DMSO or CH3CN to yield [2 + 2] dinuclear Ag(I) NHCs macrocyclic complexes 2a and 2b, which showed much different conformation in solid corresponding to the R- substituent. Carbene transmetalation reactions of 2a-b with Au(SMe2)Cl give dinuclear Au(I) analogs 3a and 3b. The new NHCs complexes were characterized by elemental analyses, 1H NMR, 13C NMR and the structures of 2a-b and 3a were confirmed by X-ray diffraction determination.  相似文献   

14.
Four polymeric complexes [M(SCN)2(4-abaH)2]n [M=Co(II) (1) or Cd(II) (2), 4-abaH=4-aminobenzoic acid], [Zn(N3)(4-aba)]n (3) and [Cd(N3)(4-aba)(H2O)]n (4) were prepared from the reactions of 4-abaH with M(SCN)2 [M=Co(II) or Cd(II)] and M(N3)2 [M=Zn(II) or Cd(II)] at different pH values. Their crystal structures have been determined by single-crystal X-ray diffraction. Both 1 and 2 consist of one-dimensional chains [M(μ-1,3-SCN)2(4-abaH)2]n, in which each pair of the lateral carboxylic groups form double hydrogen bonds to furnish infinite two-dimensional sheets. In 3, the Zn(II) atoms are bridged by μ-1,1-azide groups and μ2-carboxylate-O,O′ groups into an infinite zigzag chain featuring six-membered (ZnNZnOCO)n rings, which are further connected by the 4-aba-N,O,O′ groups to generate a two-dimensional network. In 4, however, adjacent Cd(II) atoms are bridged by μ-1,1,3-azide groups to form an infinite chain with both four-membered Cd2(μ-1,1-N3)2 and eight-membered Cd2(μ-1,3-N3)2 rings. These chains are further connected by the 4-aba-N,O groups to generate a three-dimensional brickwall-like network. The results show significant effect of pH on the formation of the network structures.  相似文献   

15.
Nanorods of two-dimensional organometallic coordination polymer, [Ag(μ4-DPOAc)]n (1) [DPOAc = diphenylacetate], has been synthesized by the reaction of potassium diphenylacetate (DPOAcK) and AgNO3 by sonochemical process. Reaction conditions, such as the concentration of the initial reagents played important roles in the size and growth process of the final product. Silver nanoparticles were synthesized from nanorods of compound 1. These nano-coordination polymer and nanoparticles were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of nano and crystal samples of compound 1 were studied and compared with each other.  相似文献   

16.
The crystal structures of four Ag(I) and Hg(II) complexes of the ligand 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH) have been described, that is, [Hg2(N-BBzBimCH)Cl4] (1), [Hg(N-BBzBimCH)Br2] (2), [Ag(N-BBzBimCH)](NO3)(H2O) (3) and [Ag2(N-BBzBimCH)(CF3OCO)2] (4). All these compounds show 1D polymeric structures in the solid state. In complexes 1 and 4, the chloride ions and the trifluoroacetate groups bridge the [Hg2(N-BBzBimCH)Cl2] and [Ag2(N-BBzBimCH)] fragments, respectively, to generate 1D polymers. While the bromide ions in complex 2 and nitrate groups in complex 3 are only serving as terminal ligands to suffice the coordination geometry of the metal centers. In all cases, weak intermolecular interactions such as C-H?X (X = Cl, Br) contacts, hydrogen bonds, π-π interactions and C-H?π stacking play important roles to extend the 1D chain structures to 2D network. Solid state fluorescence of these compounds was also studied.  相似文献   

17.
Coordination polymers [Ag(L1,3)]n (L1 = hydantoin, L3 = 5,5-dimethylhydantoin), {[Ag(L2)].0.5H2O}n (L2 = 1-methylhydantoin) and [Ag(NH3)(L4)]n (L4 = allantoin) were prepared and characterized by elemental analysis, spectroscopic (IR, FTIR and NMR), thermal and mass spectrometry methods. The crystal structure of {[Ag(1-methylhydantoin)]·0,5H2O}n was determined and analyzed. Three 1-methylhydantoinate ligands create a T-shape (CN = 3) coordination sphere around the Ag+ ion. Additionally, a short Ag?Ag distance of 2.997 Å was found in the structure resulting in the expanded [3 + 2] environment of a distorted square shape. The [Ag(L2)] entities are bound to each other by the bridging organic ligands. Thus a two-dimensional coordination polymer is created with water molecules located between the layers. In contrast to hydantoins, the allantoin complex contains an additional ammonia molecule in the coordination sphere. Moreover, in the Ag-alla complex the M-organic ligand binding site is shifted to the N-atom of the ureid chain. Free ligands are cytotoxically inactive against human MCF-7 and A549 cancer cell lines and mouse fibroblasts Balb/3T3. The silver hydantoin complexes exhibit a very strong activity against these lines. (The introduction of the methyl groups to the ring slightly increases resistance only against the A549 cell line.) In contrast, the silver complex of allantoin shows only a weak activity which may be related to the presence of the cytotoxic ammonia group in the composition of the compound and/or the different binding site of the ligand. Calculated in silico physiochemical parameters are promising for the future application of the complexes as drugs.  相似文献   

18.
A new silver(II) complex, {[Ag(L1)](NO3)2·4H2O}n (1) (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12] docosane) has been synthesized and structurally characterized by a combination of analytical, spectroscopic, electrochemical and X-ray diffraction methods. The complex 1 exhibits a 1D supramolecular polymer with the silver(II) macrocycle L1 and nitrate ions, where 1D chain is formed by hydrogen bonds between the two sets of pre-organized N-H groups of the macrocycle and nitrate ions. The lattice water molecules mediate to interconnect each 1D chain to form the 2D supramolecular sheet. In 1 the unusual high oxidation state of Ag(II) is stabilized by the tetraazamacrocyclic ligand L1. The cyclic voltammogram for 1 indicates that the electrochemical oxidation of [Ag(L1)]2+ is an irreversible process.  相似文献   

19.
Condensation of (S,S)-1,2-cyclohexanediamine with 2 equiv. of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives N,N′-bis(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine (S,S-1) in 95% yield. Reduction of 1 with an excess of NaBH4 in MeOH at 50 °C gives N,N′-bis(pyridin-2-ylmethyl)-(S,S)-1,2-cyclohexanediamine (S,S-2) in 90% yield. Reaction of 1 or 2 with 1 equiv. of CuCl2 · 2H2O in methanol gives complexes [N-(pyridin-2-ylmethylene)-(S,S)-1,2-cyclohexanediamine]CuCl2 (3) and [Cu(S,S-2)(H2O)]Cl2 · H2O (4), respectively, in good yields. Complex 4 can further react with 1 equiv. of CuCl2 · 2H2O in methanol to give [Cu(S,S-2)][CuCl4] (5) in 75% yield. The rigidity of the ligand coupled with the steric effect of the free anion plays an important role in the formation of the helicates. Treatment of ligand S,S-1 with AgNO3 induces a polymer helicate {[Ag(S,S-1)][NO3]}n (6), while reaction of ligand 2 with AgPF6 or AgNO3 in methanol affords a mononuclear single helicate [Ag(S,S-2)][PF6] (7) or a dinuclear double helicate [Ag2(S,S-2)2][NO3]2 · 2CH3OH (8) in good yields, respectively. All compounds have been characterized by various spectroscopic data and elemental analyses. Compounds 1, 3-5, 7 and 8 have been further subjected to single-crystal X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do show catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

20.
A new bis(macrocycle) ligand, 7,7-(2-hydoxypropane-1,3-diyl)-bis{3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene} (HL), and its dicopper(II) ([Cu2(HL)Cl2](NO3)2 · 4H2O (4a), [Cu2(HL)I2]I2 · H2O (4b)) and dinickel(II) ([Ni2(L)(OH2)](ClO4)3 (5a), [Ni2(L)(OH2)]I3 · 2H2O (5b), [Ni2(L)N3](N3)2 · 7H2O (5c)) complexes have been synthesized. The alkoxide bridged face-to-face structure of the dinickel(II) complex 5c has been revealed by X-ray crystallography, as well as the “half-opened clamshell” form of the bis(macrocyclic) dicopper(II) complex 4b. Variable temperature magnetic susceptibility studies have indicated that there exists intramolecular antiferromagnetic coupling (J=−33.8 cm−1 (5a), −32.5 cm−1 (5b), and −29.7 cm−1 (5c)) between the two nickel(II) ions in the nickel(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号