首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The time-course of intranuclear Simian virus 40 (SV40) tumor (T) antigen synthesis and accumulation in permissive CV1 monkey cells and nonpermissive 3T3 mouse cells has been studied by immunofluorescence and cytofluorometry. CV1 cells accumulate T antigen continuously over a period of 48 h after infection, whereas in 3T3 cells the T-antigen content remains about constant and at a comparatively low level. Only those CV1 cells which have attained a threshold concentration of intranuclear T antigen synthesize viral capsid proteins (V antigen). In nonpermissive 3T3 cells, the T-antigen threshold value for the onset of V-antigen synthesis is higher than in CV1 cells and is never reached by infected cells. However, 3T3 cells microinjected with sufficient amounts of SV40 DNA easily surpass this value and behave permissively.  相似文献   

2.
The simian virus 40 (SV40) large-T antigen is essential for SV40 DNA replication and for late viral gene expression, but the role of the SV40 small-t antigen in these processes is still unclear. We have previously demonstrated that small t inhibits SV40 DNA replication in vitro. In this study, we investigated the effect of small t on SV40 replication in cultured cells. CV1 monkey cell infection experiments indicated that mutant viruses that lack small t replicate less efficiently than the wild-type virus. We next microinjected CV1 cells with SV40 DNA with and without purified small-t protein and analyzed viral DNA replication efficiency by Southern blotting. Replication of either wild-type SV40 or small-t deletion mutant DNA was increased three- to fivefold in cells coinjected with purified small t. Thus, in contrast to our in vitro observation, small t stimulated viral DNA replication in vivo. This result suggests that small t has cellular effects that are not detectable in a reconstituted in vitro replication system. We also found that small t stimulated progression of permissive monkey cells--but not of nonpermissive rodent cells--from G0-G1 to the S phase of the cell cycle, possibly leading to an optimal intracellular environment for viral replication.  相似文献   

3.
The simian virus 40 (SV40) T antigen host range mutants dl1066 and dl1140 display a postreplicative block to plaque formation which suggests a novel role for T antigen late in the viral life cycle. The host range mutants dl1066 and dl1140 are able to grow in and plaque on BSC but not on CV1 monkey kidney cells, a normally permissive host. Previous work showed that in CV1 cells infected with dl1066 and dl1140, levels of viral DNA replication and of late capsid protein accumulation were only slightly reduced and the failure to accumulate agnoprotein was not likely to be the major factor responsible for the mutants' growth defect. Here we show that the host range mutants are defective in the assembly of viral particles. SV40 assembly proceeds as the progressive conversion of 75S viral chromatin complexes to 200S-240S assembled virions. When virus-infected cell extracts are separated on 5 to 40% sucrose gradients, wild-type extracts show the greatest accumulation of viral late protein in the 200S-240S fractions corresponding to the assembled virus peak and lesser amounts in the 75S-150S fractions corresponding to immature assembly intermediates. The host range mutants dl1066 and dl1140 grown in nonpermissive CV1 cells, however, failed to assemble any appreciable amounts of mature 200S-240S virions and accumulate 75S intermediates, whereas in permissive BSC cells, levels of assembly were more slightly reduced than those of the wild type. Analysis of the protein composition of gradient fractions suggests that SV40 assembly proceeds by a mechanism similar to that proposed for polyomavirus and suggests that the host range blockage may result from a failure of such mutants to add VP1 to 75S assembly intermediates.  相似文献   

4.
Primary or continuous lines of mouse cells (3T3) are nonpermissive for simian virus 40 (SV40). Abortively infected cells synthesize tumor antigen (T antigen but not viral DNA and virus capsid protein (V antigen). V antigen, however, was obtained when SV40 DNA was injected into 3T3 cells. This late gene expression also appears to be correlated with the quantity of injected DNA molecules per 3T3 cell. T antigen formation can be detected after microinjection of only 1 to 2 DNA molecules, but the intensity of intranuclear T antigen fluorescence is significantly brighter with injection of higher concentrations of viral DNA. In permissive cells (TC7), early and late SV40 gene expression is directly related to the number of injected molecules. Microinjection of 1DNA molecule induced T and V antigen formation with the same efficiency as microinjection of 2,000 to 4,000 molecules. The question of weather late SV40 gene expression is directly related to the quantity of an early virus-specific product was approached by microinjection of early SV40 complementary RNA together with small amounts of viral DNA. V antigen was obtained in a high proportion of recipient 3T3 cells at conditions where microinjection of viral DNA alone induced T but not V antigen synthesis.  相似文献   

5.
6.
Simian virus 40 mutant with transposed T-antigen and VP1 genes   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

7.
Simian virus 40 large T antigen is a multifunctional protein which exists in different molecular weight forms. According to several reports, T antigen encoded by temperature-sensitive simian virus 40 A locus mutants (tsA) is unable to oligomerize into high-molecular-weight species. To try to correlate structural and functional properties, we selected tsA58 and tsA1499, both of which are heat sensitive for lytic growth, but only tsA58 is heat sensitive for transformation. Here we report that at permissive and nonpermissive temperatures, T antigen from tsA1499-infected monkey cells retained the ability to oligomerize, whereas reported previously, tsA58 T antigen failed to oligomerize at the nonpermissive temperature. Furthermore, we studied the formation of complexes between T antigen and the cellular p53 protein (T-p53) late in infection. Corresponding to its heat-stable oligomerization properties, T antigen encoded by tsA1499 formed T-p53 complexes regardless of temperature. In contrast, tsA58 encoded T-p53 complexes, preformed at the permissive temperature, remained heat stable after shifting up to the nonpermissive temperature; but at this temperature no new T-p53 complexes arose. The mutants did not replicate viral DNA at the nonpermissive temperature, suggesting that neither the oligomerization of T antigen nor the formation of T-p53 complexes seems to be sufficient for viral DNA replication or for the expression of late viral proteins.  相似文献   

8.
9.
African green monkey cells (CV1 line) were infected with UV-irradiated simian virus 40 (SV40), and permissive lines of stably transformed cells were established. These cell lines display the SV40 T-antigen and the growth characteristics typical of nonpermissive transformed cells (e.g., reduced cell density inhibition, reduced serum dependence, ability to overgrow normal cells, and colony formation in soft agar). The level of permissiveness to superinfecting SV40 is fully comparable with that of nontransformed CV1 and BSC-1 lines. The transformed monkey lines also support SV40 plaque production under agar. By Cot analysis, the transformed permissive cells contain, on an average, 1 to 2 SV40 genome equivalents, and the majority of the viral sequences are associated with the high-molecular-weight cellular DNA. No spontaneous production of infectious SV40 has been observed. The transformed permissive monkey cells failed to support the replication of SV40 tsA mutants at the restrictive temperature. To account for this, it is suggested that the gene A product has separate functions for transformation and initiation of viral DNA synthesis, and only the former function is expressed in the transformed permissive monkey cells.  相似文献   

10.
By using a photoaffinity ligand, cell extracts from transformed macrophages that were established by infection with temperature-sensitive mutants (tsA640) of simian virus 40 (SV40) were examined for cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins. At the nonpermissive temperature for SV40 large T antigen, 39.0 degrees C, no significant cAMP-binding proteins could be detected, such as primary mouse macrophages. At the permissive temperature of 33.0 degrees C, cAMP-binding proteins appeared later than SV40 T antigen expression and cellular DNA synthesis. The profile of cAMP-binding proteins was similar to that of resting, but not proliferating, mouse clonal fibroblasts (BALB/c 3T3). These and previous results suggest that SV40 T antigen influences the expression of cAMP-binding proteins in tsA640-transformed macrophages; the large/small T antigen converts the profile of cAMP-binding proteins from macrophage to fibroblastic cells.  相似文献   

11.
12.
Multipotential stem cells of a murine teratocarcinoma are resistant to typical infection with either polyoma virus (PV) or Simian virus 40 (SV40). Differentiated progeny of the stem cells are susceptible to infection in a manner identical to other mouse somatic cells, i.e., they are permissive for PV and nonpermissive for SV40. The early interactions between the stem cells (embryonal carcinoma or EC cells) and SV40 and PV were studied. Virions adsorbed to and penetrated into the cytoplasm and nucleus of EC cells, but did not induce expression of T antigen in the EC nuclei. Purified SV40 DNA was capable of inducing T antigen in differentiated teratocarcinoma cells but not in EC cells. Virus could not be rescued from EC cells previously exposed to SV40. The resistance of the stem cells to infection apparently involves a block in the infectious cycle after adsorption and penetration but before T antigen induction.  相似文献   

13.
In an attempt to identify cellular genes that might be involved in simian virus 40 (SV40) transformation, we have set out to isolate cells which express T antigen but are not transformed. SV40 DNA and the herpes simplex virus thymidine kinase gene were cotransfected into tk- 3T3 fibroblasts. Of 72 colonies screened that were resistant to hypoxanthine-aminopterin-thymidine, 57 were T antigen positive as judged by immunofluorescence. One of these lines, A27, had a normal growth phenotype in monolayer overgrowth and soft agar assays. It contained intact SV40 sequences that could be rescued by fusion to permissive cells. This rescued virus was fully capable of transforming nonpermissive cells to the same extent as did wild-type virus. The A27 cells, however, were not transformable by infection with SV40 or by transfection of SV40 DNA. It is likely that these cells were altered in a cellular function required for the establishment of the transformed state.  相似文献   

14.
African green monkey kidney (AGMK) cells were nonpermissive hosts for type 2 adenovirus although the restriction was not complete; when only 3 plaque-forming units/cell was employed as the inoculum, the viral yield was about 0.1% of the maximum virus produced when simian virus 40 (SV40) enhanced adenovirus multiplication. The viral yield of cells infected only with type 2 adenovirus increased as the multiplicity of infection was increased. Type 2 adenovirus could infect almost all AGMK cells in culture; adenovirus-specific early proteins and DNA were synthesized in most cells, but small amounts of late proteins were made in relatively few cells. Even when cells were infected with both SV40 and adenovirus, only about 50% were permissive for synthesis of adenovirus capsid proteins. Approximately the same quantity of adenovirus deoxyribonucleic acid (DNA) was synthesized in the restricted as in the SV40-enhanced infection. However, in cells infected with SV40 and type 2 adenovirus, replication of SV40 DNA was blocked, multiplication of SV40 was accordingly inhibited, and synthesis of host DNA was not stimulated. To enhance propagation of type 2 adenovirus, synthesis of an early SV40 protein was essential; 50 mug of cycloheximide per ml prevented the SV40-induced enhancement of adenovirus multiplication, whereas 5 x 10(-6)m 5-fluoro-2-deoxyuridine did not abrogate the enhancing phenomenon.  相似文献   

15.
The nuclear distribution of the large T antigen (T-Ag) during lytic infection of CV1 monkey kidney cells with SV40 virus was studied by immunoelectron microscopy. The viral protein was associated with the cellular chromatin and also accumulated within a small number of clearly delimited areas of the nucleoplasm. These T-Ag-rich areas were devoid of viral particles but contain 3-10 nm DNA filaments in an amorphous matrix. We have named these areas 'viral DNA/T-Ag loci.' The combination of the immunostaining for T-Ag with ultrastructural autoradiography revealed that these viral DNA/T-Ag loci were the sites of active SV40 DNA synthesis. We suggest that the viral DNA/T-Ag loci may represent definite structural domains specifically involved in viral DNA replication regulated by SV40-T antigen.  相似文献   

16.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

17.
Quantitative two-color fluorescent analysis of Simian virus (SV40) infection of permissive CV-1 cells was investigated. Analysis included by quantitation of cellular DNA, the early viral tumor (T) antigen with a monoclonal antibody, and late viral (V) antigens with a polyclonal antibody. T antigen was detected in all phases of the cell cycle at 6 and 12 h, after SV40 infection of growth arrested cells. At later time intervals, the percentage of T-antigen-positive cells increased with the induction of the cells into successive rounds of DNA synthesis and an increase in tetraploid-polyploid cells. The amount of T antigen per cell increased as the cells entered the successive stages of the cell cycle (G0/G1----G2 + M----tetraploid S and G2 + M). The V antigen from adsorbed virus was detected immediately after infection. Synthesis of V antigen began in late S and G2 + M phases of the cell cycle. This quantitative analysis allows a definitive determination of antigen per cell in a population correlated with the cell cycle and may be useful in correlating viral and cellular events with transformation.  相似文献   

18.
19.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

20.
Role of simian virus 40 gene A function in maintenance of transformation.   总被引:108,自引:73,他引:35       下载免费PDF全文
Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号