首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

Sexually dimorphic populations are often located in drier habitats than cosexual populations. Gender plasticity (GP), whereby hermaphrodites alter female and male functions depending on resources, and sex-differential plasticity (SDP) between hermaphrodites and unisexuals are predicted to affect sexual system stability. Here, GP and SDP are evaluated in cosexual and gynodioecious Wurmbea biglandulosa and sub-dioecious and dioecious W. dioica.

Methods

GP was evaluated under two resource conditions, compared among sexual systems and assessed as to whether (1) males produced perfect flowers and (2) hermaphrodites altered investment in perfect (female function) and total (male function) flowers. SDP was assessed within sexual systems as differences between sex functions of hermaphrodites vs. unisexuals. Males and hermaphrodites were compared to assess whether size thresholds for female function differed among sexual systems. Plasticity costs were evaluated using correlations between female function and male traits in hermaphrodites, and in W. dioica by comparing hermaphrodite and male regressions between plant size and pollen production.

Key Results

In dioecious W. dioica no males exhibited GP, whereas 100 % did in gynodioecious and cosexual W. biglandulosa. In sub-dioecious W. dioica, resources affected GP (high, 66 %; low, 42 %). Hermaphrodites in all sexual systems reduced perfect but not total flowers under low resources. Unisexuals were unaffected, demonstrating SDP for female function only. Thresholds for female function were greater in sub-dioecious W. dioica than in W. biglandulosa. Plasticity costs were detected only in sub-dioecious W. dioica.

Conclusions

SDP for female function could assist female establishment in cosexual populations and maintain females in gynodioecious and sub-dioecious populations. Although the absence of male SDP should stabilize sub-dioecy, plasticity costs would render sub-dioecy unstable, favouring canalized males over hermaphrodites. This study highlights the importance of interactions between environmental conditions and hermaphrodite sex expression for the stability of dimorphic sexual systems.  相似文献   

2.
    
Separate sexes can evolve under nuclear inheritance when unisexuals have more than twice the reproductive fitness of hermaphrodites through one sex function (e.g., when females have more than twice the seed fertility of hermaphrodites). Because separate sexes are thought to evolve most commonly via a gynodioecious intermediate (i.e., populations in which females and hermaphrodites cooccur), the conditions under which females can become established in populations of hermaphrodites are of considerable interest. It has been proposed that resource-poor conditions could promote the establishment of females if hermaphrodites are plastic in their sex allocation and allocate fewer resources to seed production under these conditions. If this occurs, the seed fertility of females could exceed the doubling required for the evolution of unisexuality under low-, but not high-resource conditions (the sex-differential plasticity hypothesis). We tested this hypothesis using replicate experimental arrays of the aquatic herb Sagittaria latifolia grown under two fertilizer treatments. The results supported the sex-differential plasticity hypothesis, with females having more than twice the seed fertility of hermaphrodites under low-, but not high-fertilizer conditions. Our findings are consistent with the idea that separate sexes are more likely to evolve under unfavorable conditions.  相似文献   

3.
4.
  总被引:1,自引:0,他引:1  
Plant species rarely exhibit both monoecious and dioecious sexual systems. This limits opportunities to investigate the consequences of combined versus separate sex function on mating patterns and genetic variation and the analysis of factors responsible for the evolution and maintenance of the two sexual systems. Populations of the North American clonal aquatic Sagittaria latifolia are usually either monoecious or dioecious and often grow in close geographic proximity. We investigated mating patterns, genetic structure, and relationships between the two sexual systems using allozyme variation in populations from southern Ontario, Canada. As predicted, selfing rates in monoecious populations (n = 6, mean = 0.41) were significantly higher than in dioecious populations (n = 6, mean = 0.11). Moreover, marker-based estimates of inbreeding depression (delta) indicated strong selection against inbred offspring in both monoecious (mean delta = 0.83) and dioecious (mean delta = 0.84) populations. However, the difference in selfing rate between the sexual systems was not reflected in contrasting levels of genetic variation. Our surveys of 12 loci in 15 monoecious and 11 dioecious populations revealed no significant differences in the proportion of polymorphic loci (P), number of alleles per locus (A), or observed and expected heterozygosity (H(o) and H(e), respectively). Strong inbreeding depression favoring survival of outcrossed offspring may act to maintain similar levels of diversity between monoecious and dioecious populations. Despite geographical overlap between the two sexual systems in southern Ontario, a dendrogram of genetic relationships indicated two distinct clusters of populations largely corresponding to monoecious and dioecious populations. Reproductive isolation between monoecious and dioecious populations appears to be governed, in part, by observed differences in habitat and life history. We suggest that selfing and inbreeding depression in monoecious populations are important in the transition from monoecy to dioecy and that the maintenance of distinct sexual systems in S. latifolia is governed by interactions between ecology, life history, and mating.  相似文献   

5.
Variation in population sex ratio can be influenced by natural selection on alternate sex phenotypes as well as nonselective mechanisms, such as genetic drift and founder effects. If natural selection contributes to variation in population sex ratio, then sex ratio should covary with resource availability or herbivory. With nonselective mechanisms, sex ratio should covary with population size. We estimated sex ratio, resource availability, herbivory and size of 53 populations of gynodioecious Lobelia siphilitica. Females were more common in populations with higher annual temperatures, lower soil moisture and lower predation on female fruits, consistent with sex-specific selection. Females were also more common in small populations, consistent with drift, inbreeding or founder effects. However, small populations occurred in areas with higher temperatures than large populations, suggesting that female frequencies in small populations could be caused by sex-specific selection. Both selective and nonselective mechanisms likely affect sex ratio variation in this gynodioecious species.  相似文献   

6.
The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index −0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation.  相似文献   

7.

Background

The ‘gynodioecy–dioecy pathway’ is considered to be one of the most important evolutionary routes from hermaphroditism to separate sexes (dioecy). Despite a large accumulation of evidence for female seed fertility advantages in gynodioecious species (females and hermaphrodites coexist) in support of the first step in the gynodioecy–dioecy pathway, we still have very little evidence for the second step, i.e. the transition from gynodioecy to dioecy.

Scope

We review the literature to evaluate whether basic predictions by theory are supported. To establish whether females'' seed fertility advantage and frequencies are sufficient to favour the invasion of males, we review these for species along the gynodioecy–dioecy pathway published in the last 5 years. We then review the empirical evidence for predictions deriving from the second step, i.e. hermaphrodites'' male fertility increases with female frequency, selection favours greater male fertility in hermaphrodites in gynodioecious species, and, where males and hermaphrodites coexist with females (subdioecy), males have greater male fertility than hermaphrodites. We review how genetic control and certain ecological features (pollen limitation, selfing, plasticity in sex expression and antagonists) influence the trajectory of a population along the gynodioecy–dioecy pathway.

Conclusions

Females tend to have greater seed fertility advantages over hermaphrodites where the two coexist, and this advantage is positively correlated with female frequency across species, as predicted by theory. A limited number of studies in subdioecious species have demonstrated that males have an advantage over hermaphrodites, as also predicted by theory. However, less evidence exists for phenotypic selection to increase male traits of hermaphrodites or for increasing male function of hermaphrodites in populations with high female frequency. A few key case studies underline the importance of examining multiple components of male fertility and the roles of pollen limitation, selfing and plasticity, when evaluating advantages. We conclude that we do not yet have a full understanding of the transition from gynodioecy to dioecy.  相似文献   

8.
Extravagant secondary sexual characters show sexual size dimorphismin some species but are completely sex limited in others. Sexualornamentation has been hypothesized to benefit mainly malesthrough sexual selection, but the costs of secondary sexualcharacters initially would be experienced by both sexes. Theevolution of sexual size dimorphism of ornaments and, eventually,the complete sex-limited expression of these characters, willdepend on the effects of sexual and natural selection on thetwo sexes. A phylogenetic analysis controlling for similaritiesdue to common ancestry of 60 independent evolutionary originsof feather ornamentation in birds was used to investigate ecologicalfactors correlated with sexual size dimorphism and sex-limitedexpression of secondary sexual characters. When the size ofan ornament is large relative to body size, the trait willbe particularly costly for females, resulting in selectionfor increased sexual size dimorphism of the ornament. Indeed,sexual size dimorphism of ornaments was positively relatedto the relative size of male ornaments but was unrelated torelative size of female ornaments. Species with polygynousand lekking mating systems with little or no male parentalcare (in particular nest building and incubation) demonstratedsex-limited expression of ornaments as compared to monogamousspecies. Species with no food provisioning of offspring by themale showed a trend for increased sexual size dimorphism ofornaments. Therefore, large natural selection costs duringreproduction imposed by the expression of secondary sexualcharacters are related to the evolution of sexual size dimorphismof ornaments and eventually their complete loss from females.  相似文献   

9.
Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments.  相似文献   

10.
 A valuable approach to understanding the evolution of gender dimorphism involves studies of single species that exhibit intraspecific variation in sexual systems. Here we survey sex ratios in 35 populations of Wurmbea biglandulosa, previously described as hermaphroditic. We found pronounced intraspecific variation in sexual systems; populations in the northeastern part of the species' range were hermaphroditic, whereas other populations were gynodioecious and contained 2–44% females. Populations with lower annual rainfall were more likely to be gynodioecious, supporting the view that gender dimorphism evolves more frequently in harsher environments. In gynodioecious populations, however, female frequency was not related to either annual rainfall or habitat, indicating that other factors are important in determining sex ratio variation. Females had smaller flowers and shorter stems than did hermaphrodites, potentially providing a basis for resource compensation. A female fecundity advantage may contribute to the maintenance of females in populations because females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites. Received March 2, 2001 Accepted February 25, 2002  相似文献   

11.
    
银露梅亚雌雄异株种群的多倍化和花特征性二态性二态是性别分离植物的常见性状,对植物的雌性和雄性功能可能产生不同的影响。本文以青藏高原特有植物银露梅(Dasiphora glabra)为研究对象,利用银露梅同时存在两性、雌性和雄性植株的种群,探讨银露梅与传粉相关的花特征性二态现象及其对传粉者访问、花粉流和结实的影响。另外,本文还利用流式细胞仪检查了两性植株、雄性植株和雌性植株之间基因组大小的差异。研究结果表明:银露梅雌性植株和雄性植株数量约占种群中植株总数量的40%,表明银露梅两性植株数量多于雄性和雌性的植株数量。两性植株的花数量显著多于雄性和雌性植株的花数量。雄花的花大小显著大于雌花和两性花的花大小。雄花的花粉数量与两性花的花粉数量没有差异,但是雌花的胚珠数量显著高于两性花的胚珠数量。双翅目的蝇类是银露梅最主要的访花者,尽管访花者偏好访问更大的花,但是在花间连续访问对大花没有表现出偏好。模拟花粉流实验表明,两性植株和雄性植株的有效花粉转移都很低,从而导致较低的结实率。雌性植株和雄性植株的DNA含量约为两性植株的4倍,并且单性植株和两性植株之间相互授粉不能结实。以上结果表明,与两性花相比,雌花和雄花在与传粉相关的花特征二态性上分别在雌性和雄性功能上表现出优势,但这种优势在很大程度上被低效的花粉转移所掩盖。银露梅的雌性植株和雄性植株经历了多倍化事件,导致与两性植株之间存在繁殖隔离,从而维持了3种性别植株的共存。  相似文献   

12.
Natural selection may act in different directions during different life-history stages, or in different directions on different classes of individuals. Antagonistic selection of this kind may be an important mechanism by which additive genetic variation for quantitative traits is maintained, and can prevent populations or species reaching local adaptive peaks. This paper reports the results of a study of viability selection on morphological traits of nestling collared flycatchers Ficedula albicollis . Analyses performed without knowledge of the sex of nestlings suggested that no selection was occurring on these traits. However, using molecular sex identification with the avian CHD gene, it is shown that selection acts in different directions on male and female body size from fledging to breeding, apparently favouring relatively small males and large females. The results suggest that differential selection on male and female nestlings may contribute to purely phenotypic sexual size dimorphism in this species. These findings highlight the potential of newly developed molecular sexing techniques to reveal the consequences of an individual's gender for many aspects of its life history in taxa where gender cannot be determined on the basis of external appearance.  相似文献   

13.
14.
    
In gynodioecious plants the selective processes that determine the relative number of female and hermaphroditic individuals are often frequency dependent. Frequency-dependent fitness can occur in the two sexes through a variety of mechanisms, especially given pollen limitation and inbreeding depression when hermaphrodites are rare. Frequency dependence in several components of the fitness of female and hermaphroditic Silene vulgaris was tested in experiments in which the relative numbers of the two sexes was varied among 12 artificial populations. In females, the proportion of flowers that set fruit covaried positively among populations with the frequency of hermaphrodites in two separate experiments, whereas the number of flowers/plant covaried negatively in one case. In hermaphrodites, the number of seeds/fruit covaried positively with the frequency of hermaphrodites, whereas the fitness of hermaphrodites estimated through pollen transfer covaried negatively. The results are discussed as they relate to the selective maintenance of gynodioecy in S. vulgaris and in light of a recent model of the effect of population structure on selection in gynodioecious systems.  相似文献   

15.
    
Male and female plants of dioecious species often differ in their resource demands and this has been linked to secondary sexual dimorphism, including sex‐specific interactions with other organisms such as herbivores and pollinators. However, little is known about the interaction between dioecious plants and fungal root endophytes. Plants may be simultaneously colonised by arbuscular mycorrhizal (AM) and dark septate (DS) fungi. While it is well established that AM mutualism involves reciprocal transfer of photosynthates and mineral nutrients between roots of host plants and these fungi, the role of DS fungi remains controversial. Here, we report the temporal and spatial variation in AM and DS fungi in female, male and non‐reproductive Antennaria dioica plants in three natural populations in Finland during flowering and after seed production. Females had higher colonisation by AM fungi, but lower colonisation by DS fungi than male and non‐reproductive plants. The higher AM colonisation was observed during flowering, and this difference varied among populations. Our results suggest that females and males of A. dioica interact with AM and DS fungi differently and that this relationship is dependent on soil fertility.  相似文献   

16.
    
Plants are notoriously variable in gender, ranging in sex allocation from purely male through hermaphrodite to purely female. This variation can have both a genetic and an adaptive plastic component. In gynodioecious species, where females co‐occur with hermaphrodites, hermaphrodites tend to shift their allocation towards greater maleness when growing under low‐resource conditions, either as a result of hermaphrodites shifting away from an expensive female function, or because of enhanced siring advantages in the presence of females. Similarly, in the androdioecious plant Mercurialis annua, where hermaphrodites co‐exist with males, hermaphrodites also tend to enhance their relative male allocation under low‐resource conditions. Here, we ask whether this response differs between hermaphrodites that have been evolving in the presence of males, in a situation analogous to that supposed for gynodioecious populations, vs. those that have been evolving in their absence. We grew hermaphrodites of M. annua from populations in which males were either present or absent under different levels of nutrient availability and compared their reaction norms. We found that, overall, hermaphrodites from populations with males tended to be more female than those from populations lacking males. Importantly, hermaphrodites' investment in pollen and seed production was more plastic when they came from populations with males than without them, reducing their pollen production at low resource availability and increasing their seed production at high resource availability. These results are consistent with the hypothesis that plasticity in sex allocation is enhanced in hermaphrodites that have likely been exposed to variation in mating opportunities due to fluctuations in the frequency of co‐occurring males.  相似文献   

17.
    
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters—stature, span, and cubit—in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates.  相似文献   

18.
    
Variation in plant sex ratios is often attributable to sex-specific mortality in heterogeneous environments that differentially limit male and female plant reproduction. Yet sexual dimorphism and plastic responses to environmental heterogeneity are common and may co-vary with variation in sex ratios. Here, we show that the sex ratio and the degree of sexual dimorphism for a number of plant traits varied along climatic and elevation gradients in three wind-pollinated dioecious species, Rumex lunaria, Urtica dioica and Salix helvetica. Some of the observed sex-specific responses to climatic variation are consistent with greater sensitivity of females to water scarcity, but most responses rather point to the greater sensitivity of males to ecological stress, consistent with larger male reproductive effort, as has been commonly reported for wind-pollinated plants. In contrast, we found no evidence for variation in either sex ratios or sexual dimorphism expected under sexual selection. Interestingly, sex ratios and sexual dimorphism varied both along distinct and the same ecological axes of variation, suggesting that the evolution of sexual dimorphism in the measured traits was not sufficient to prevent sex-specific mortality.  相似文献   

19.
Bumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other natural selection. Using a phylogenetic comparative approach, we explored the allometric relationships among queens, males, and workers in 70 species of bumblebees (Bombus sp.). We found hyperallometry in thorax width for males relative to workers, indicating greater evolutionary divergence of body size in males than in sterile females. This is consistent with the hypothesis that selection for reproductive function, most probably sexual selection, has caused divergence in male size among species. The slope for males on workers was significantly steeper than that for queens on workers and the latter did not depart from isometry, providing further evidence of greater evolutionary divergence in male size than female size, and no evidence that reproductive selection has accelerated divergence of females. We did not detect significant hyperallometry when male size was regressed directly on queen size and our results thus add the genus Bombus to the increasing list of clades that have female-larger sexual size dimorphism and do not conform to Rensch's rule when analyzed according to standard methodology. Nevertheless, by using worker size as a common control, we were able to demonstrate that bumblee species do show the evolutionary pattern underlying Rensch's rule, that being correlated evolution of body size in males and females, but with greater evolutionary divergence in males.  相似文献   

20.
Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch''s rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号