首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcyclin is a calcium and zinc binding protein   总被引:1,自引:0,他引:1  
Calcyclin, a cell cycle regulated protein, was recently purified from Ehrlich ascites tumour (EAT) cells and shown to be a calcium binding protein. Here we show that calcyclin monomer and dimer also bind zinc ions. Zinc binding sites seem to be different from calcium binding sites since: preincubation with Ca2+ lacks effect on the binding of Zn2+, and Ca2+ (but not Zn2+) increases tyrosine fluorescence intensity. Binding of Zn2+ reduces the extent of the conformational changes induced by Ca2+, and seems to affect Ca2(+)-binding. The data suggest that Ca2+ and Zn2+ might trigger the biological activity of calcyclin.  相似文献   

2.
Calcium/calmodulin-dependent protein kinase II (CaMPK-II) is a key regulatory enzyme in living cells. Modulation of its activity, therefore, could have a major impact on many cellular processes. We found that Zn(2+) has multiple functional effects on CaMPK-II. Zn(2+) generated a Ca(2+)/CaM-independent activity that correlated with the autophosphorylation of Thr(286), inhibited Ca(2+)/CaM binding that correlated with the autophosphorylation of Thr(306), and inhibited CaMPK-II activity at high concentrations that correlated with the autophosphorylation of Ser(279). The relative level of autophosphorylation of these three sites was dependent on the concentration of zinc used. The autophosphorylation of at least these three sites, together with Zn(2+) binding, generated an increased mobility form of CaMPK-II on sodium dodecyl sulfate gels. Overall, autophosphorylation induced by Zn(2+) converts CaMPK-II into a different form than the binding of Ca(2+)/CaM. In certain nerve terminals, where Zn(2+) has been shown to play a neuromodulatory role and is present in high concentrations, Zn(2+) may turn CaMPK-II into a form that would be unable to respond to calcium signals.  相似文献   

3.
This study investigated the effects of dietary Ca2+ on branchial Ca2+ and Zn2+ uptake, new and total zinc accumulation in target tissues (gill, liver and kidney), calcium and zinc homeostasis, and acute tolerance to waterborne zinc in fish chronically exposed to waterborne zinc. Juvenile rainbow trout (Oncorhynchus mykiss) were maintained on a calcium-enriched diet [41.2 mg vs. 21.2 mg (control) calcium/g dry wt. of food] and chronic waterborne zinc exposure (2.3 micromol/L), both separately and in combination, for 28 days. Calcium-supplemented diet in the absence of waterborne zinc significantly reduced branchial Ca2+ and Zn2+ influx rates, and new and total zinc accumulations in target tissues relative to control. However it did not protect against the acute zinc challenge. In contrast, waterborne zinc exposure significantly increased branchial Ca2+ and Zn2+ influx rates, new and total zinc concentrations in target tissues, and acute zinc tolerance relative to control. Interestingly, no such changes in any of these parameters were recorded in fish treated simultaneously with elevated dietary Ca2+ and waterborne zinc, except acute zinc tolerance which was highest among all the treatments. Thus, we conclude that the interactions between elevated dietary Ca2+ and waterborne zinc can protect freshwater fish against waterborne zinc toxicity.  相似文献   

4.
Sun HS  Hui K  Lee DW  Feng ZP 《Biophysical journal》2007,93(4):1175-1183
The essential cation zinc (Zn2+) blocks voltage-dependent calcium channels in several cell types, which exhibit different sensitivities to Zn2+. The specificity of the Zn2+ effect on voltage-dependent calcium channel subtypes has not been systematically investigated. In this study, we used a transient protein expression system to determine the Zn2+ effect on low- and high-voltage activated channels. We found that in Ba2+, the IC50 value of Zn2+ was alpha1-subunit-dependent with lowest value for CaV1.2, and highest for CaV3.1; the sensitivity of the channels to Zn2+ was approximately ranked as CaV1.2>CaV3.2>CaV2.3>CaV2.2=CaV 2.1>or=CaV3.3=CaV3.1. Although the CaV2.2 and CaV3.1 channels had similar IC50 for Zn2+ in Ba2+, the CaV2.2, but not CaV3.1 channels, had approximately 10-fold higher IC50 to Zn2+ in Ca2+. The reduced sensitivity of CaV2.2 channels to Zn2+ in Ca2+ was partially reversed by disrupting a putative EF-hand motif located external to the selectivity filter EEEE locus. Thus, our findings support the notion that the Zn2+ block, mediated by multiple mechanisms, may depend on conformational changes surrounding the alpha1 pore regions. These findings provide fundamental insights into the mechanism underlying the inhibitory effect of zinc on various Ca2+ channel subtypes.  相似文献   

5.
Zinc influx, driven by a steep inward electrochemical gradient, plays a fundamental role in zinc signaling and in pathophysiologies linked to intracellular accumulation of toxic zinc. Yet, the cellular transport mechanisms that actively generate or maintain the transmembrane gradients are not well understood. We monitored Na+-dependent Zn2+ transport in HEK293 cells and cortical neurons, using fluorescent imaging. Treatment of the HEK293 cells with CaPO4 precipitates induced Na+-dependent Zn2+ extrusion, against a 500-fold transmembrane zinc gradient, or zinc influx upon reversal of Na+ gradient, thus indicating that Na+/Zn2+ exchange is catalyzing active Zn2+ transport. Depletion of intracellular ATP did not inhibit the Na+-dependent Zn2+ extrusion, consistent with a mechanism involving a secondary active transporter. Inhibitors of the Na+/Ca2+ exchanger failed to inhibit Na+-dependent Zn2+ efflux. In addition, zinc transport was unchanged in HEK293 cells heterologously expressing functional cardiac or neuronal Na+/Ca2+ exchangers, thus indicating that the Na+/Zn2+ exchange activity is not mediated by the Na+/Ca2+ exchanger. Sodium-dependent zinc exchange, facilitating the removal of intracellular zinc, was also monitored in neurons. To our knowledge, the Na+/Zn2+ exchanger described here is the first example of a mammalian transport mechanism capable of Na+-dependent active extrusion of zinc. Such mechanism is likely to play an important role, not only in generating the transmembrane zinc gradients, but also in protecting cells from the potentially toxic effects of permeation of this ion.  相似文献   

6.
19F-n.m.r. spectra were measured to investigate the effects of Ca2+ and Zn2+ on the interaction of trifluoperazine (TFP) with three S100 proteins. It was found that TFP binds to S100a and S100ao proteins irrespective of the presence of Ca2+ and Zn2+, while in the presence of Ca2+ the apparent affinity of TFP to the proteins was greater than that in its absence or in the presence of Zn2+. In contrast, the binding affinity of TRP to S100b protein in the presence and absence of metal ions was lower than to S100a and S100ao proteins. These results suggested that TFP binds to each S100 protein in two ways: one is Ca2(+)- or Zn2(+)-dependent specific manner and another is Ca2(+)- or Zn2(+)-independent non-specific manner.  相似文献   

7.
Human brain S100b (beta beta) protein was purified using zinc-dependent affinity chromatography on phenyl-Sepharose. The calcium- and zinc-binding properties of the protein were studied by flow dialysis technique and the protein conformation both in the metal-free form and in the presence of Ca2+ or Zn2+ was investigated with ultraviolet spectroscopy, sulfhydryl reactivity and interaction with a hydrophobic fluorescence probe 6-(p-toluidino)naphthalene-2-sulfonic acid (TNS). Flow dialysis measurements of Ca2+ binding to human brain S100b (beta beta) protein revealed six Ca2+-binding sites which we assumed to represent three for each beta monomer, characterized by the macroscopic association constants K1 = 0.44 X 10(5) M-1; K2 = 0.1 X 10(5) M-1 and K3 = 0.08 X 10(5) M-1. In the presence of 120 mM KCl, the affinity of the protein for calcium is drastically reduced. Zinc-binding studies on human S100b protein showed that the protein bound two zinc ions per beta monomer, with macroscopic constants K1 = 4.47 X 10(7) M-1 and K2 = 0.1 X 10(7) M-1. Most of the Zn2+-induced conformational changes occurred after the binding of two zinc ions per mole of S100b protein. These results differ significantly from those for bovine protein and cast doubt on the conservation of the S100 structure during evolution. When calcium binding was studied in the presence of zinc, we noted an increase in the affinity of the protein for calcium, K1 = 4.4 X 10(5) M-1; K2 = 0.57 X 10(5) M-1; K3 = 0.023 X 10(5) M-1. These results indicated that the Ca2+- and Zn2+-binding sites on S100b protein are different and suggest that Zn2+ may regulate Ca2+ binding by increasing the affinity of the protein for calcium.  相似文献   

8.
外源钙离子对东南景天生长及锌积累的影响   总被引:2,自引:0,他引:2  
采用水培试验,研究了外源添加不同浓度钙离子(Ca2+)对两种生态型东南景天生物量、根系形态及体内锌、钙、硫含量的影响.结果表明:随着外源Ca2+浓度的上升,两种生态型东南景天的干物质量均增加,且超积累生态型地上部增加显著(P<0.05);超积累生态型根长和根表面积增加,而非超积累生态型降低;超积累生态型根、茎、叶锌含量随着外源Ca2+浓度的增加而上升,但各处理间差异不显著(P>0.05),非超积累生态型地上部锌含量显著降低(P<0.05).非超积累生态型根、茎、叶钙含量与外源Ca2+浓度呈显著正相关(P<0.05),超积累生态型根系硫含量与外源Ca2+浓度呈极显著正相关(P<0.01).外源Ca2+对超积累生态型东南景天锌吸收及积累有促进作用,而Ca2+浓度的升高抑制了非超积累生态型东南景天对锌的吸收.适当增加外源Ca2+可促进超积累生态型东南景天生长,改善其锌积累能力.  相似文献   

9.
Elevation of intracellular free zinc ([Zn2+]i) probably contributes to cell death in injury paradigms involving calcium deregulation and oxidative stress such as glutamate excitotoxicity. However, it is difficult to monitor both ions simultaneously in live cells. Here we present a new method using fluorescence microscopy and the ion sensitive indicators fura-2FF and FluoZin-3 to monitor both [Ca2+]i and [Zn2+]i in primary cortical neurons. We show that the new single wavelength dye FluoZin-3 responds robustly to small zinc loads, is insensitive to high Ca2+ or Mg2+, and is relatively unaffected by low pH or oxidants. The ratiometric indicator fura-2FF is sensitive to both Ca2+ and Zn2+. However, in conditions analogous to excitotoxic glutamate exposure where [Ca2+]i is high relative to [Zn2+]i, we found that fura-2FF responds mostly to [Ca2+]i but is relatively unaffected by low [Zn2+]i. Moreover, fura-2FF ratio changes caused by high [Ca2+]i or high [Zn2+]i could be distinguished because each ion produces a different spectral response. Finally, dual dye experiments showed that FluoZin-3 and fura-2FF respond robustly to [Zn2+]i and [Ca2+]j, respectively, in the same neurons during intense glutamate exposure. These studies provide a novel method for the simultaneous detection of both calcium and zinc in cells.  相似文献   

10.
M Lupu-Meiri  H Shapira  Y Oron 《FEBS letters》1990,262(2):165-169
We tested the contribution of extracellular calcium (Ca2+) to membrane electrical responses to acetylcholine (ACh) in native Xenopus oocytes. Removal of Cao caused a decrease in both the rapid (D1) and the slow (D2) chloride currents that comprise the common depolarizing response to ACh in native oocyte. The effect of Ca2+o removal on the muscarinic response was mimicked by the addition of 1 mM Mn2+, an effective antagonist of calcium influx, though not by antagonists of voltage-sensitive calcium channels. When oocytes were challenged with ACh in Ca2(+)-free medium, subsequent addition of 1.8 mM CaCl2 resulted in a rapid, often transient, depolarizing current. Similarly to the Ca2+o-dependent component of membrane electrical responses, the Ca2(+)-evoked current was reversibly abolished by Mn2+, though not by antigonists of voltage-sensitive calcium channels. Depletion of cellular calcium potentiated the Ca2(+)-evoked current, implying negative feedback of calcium channels by calcium. Injection of 10-100 fmol of inositol 1,4,5-trisphosphate (IP3) resulted in a two-component depolarizing current. IP3 injection promoted the appearance of Ca2+o-evoked current that was significantly potentiated by previous calcium depletion. We suggest that activation of cell-membrane muscarinic receptors causes opening of apparently voltage-insensitive and verapamil or diltiazem-resistant calcium channels. These channels may be activated by IP3 or its metabolites, which increase following the activation of cell membrane receptors coupled to a phospholipase C. The channels may be identical to receptor-operated channels described in other model systems.  相似文献   

11.
Taste and salivary secretion disorders have been linked to zinc deficiency, indeed zinc is found in secretory granules in the salivary gland. The signaling role for the zinc release in this tissue, however, is poorly understood. Here, we address the signaling pathways and physiological role of the zinc-sensing receptor, ZnR, in the ductal salivary gland cell line, HSY. Exposure of these cells to zinc triggered intracellular Ca2+ release from thapsigargin-sensitive stores. The G alpha q inhibitor, YM-254890 (1 microM), eliminated the Zn2+-dependent Ca2+ response, demonstrating that ZnR is a G alpha q-coupled receptor. Dose-response curves yielded an apparent K0.5 of 36 microM and a Hill coefficient of 7 in the absence of extracellular Ca2+, and K0.5 of 55 microM with a Hill coefficient of 3 in its presence. This indicates that although Zn2+ is essential for ZnR activation, Ca2+ may affect the receptor co-operativity. The homologous desensitization pattern of ZnR was characterized by pre-exposure of cells to Zn2+ at concentrations found to activate the receptor. Re-exposure of cells to Zn2+ elicited an attenuated Zn2+-dependent Ca2+ response for at least 3 h, indicating that the ZnR is strongly desensitized by Zn2+. Finally, we studied the paracrine affects of ZnR using a co-culture consisting of the HSY cells and vascular smooth muscle cells (VSMCs). While no Zn2+-dependent Ca2+ release was observed in VSMC alone, application of Zn2+ to the co-culture induced a Ca2+ rise in both HSY cells and VSMC. This Ca2+ rise was inhibited by the ATP scavenger, apyrase. Taken together, our results demonstrate that ZnR activity is monitored in salivary cells and is modulated by extracellular Ca2+. We further show that ZnR enhances secretion of ATP, thereby linking zinc to key signaling pathways involved in modification of salivary secretions by the ductal cells.  相似文献   

12.
Recoverin is an N-myristoylated 23 kDa calcium-binding protein from retina, which modulates the Ca2+-sensitive deactivation of rhodopsin via Ca2+-dependent inhibition of rhodopsin kinase. It was shown by intrinsic and bis-ANS probe fluorescence, circular dichroism, and differential scanning calorimetry that myristoylated recombinant recoverin interacts specifically with zinc ions. Similar to the calcium binding, the binding of zinc to Ca2+-loaded recoverin additionally increases its alpha-helical content, hydrophobic surface area, and environmental mobility/polarity of its tryptophan residues. In contrast to the calcium binding, the binding of zinc decreases thermal stability of the Ca2+-loaded protein. Zn2+-titration of recoverin, traced by bis-ANS fluorescence, reveals binding of a single Zn2+ ion per protein molecule. It was shown that the double-mutant E85Q/E121Q with inactivated Ca2+-binding EF-hands 2 and 3 (Alekseev, A. M.; Shulga-Morskoy, S. V.; Zinchenko, D. V.; Shulga-Morskaya, S. A.; Suchkov, D. V.; Vaganova, S. A.; Senin, I. I.; Zargarov, A. A.; Lipkin, V. M.; Akhtar, M.; Philippov, P. P. FEBS Lett. 1998, 440, 116-118), which can be considered as an analogue of the apo-protein, binds Zn2+ ion as well. Apparent zinc equilibrium binding constants evaluated from spectrofluorimetric Zn2+-titrations of the protein are 1.4 x 10(5) M(-1) (dissociation constant 7.1 microM) for Ca2+-loaded wild-type recoverin and 3.3 x 10(4) M(-1) (dissociation constant 30 microM) for the E85Q/E121Q mutant (analogue of apo-recoverin). Study of the binding of wild-type recoverin to ROS membranes showed a zinc-dependent increase of its affinity for the membranes, without regard to calcium content, suggesting further solvation of a protein myristoyl group upon Zn2+ binding. Possible implications of these findings to the functioning of recoverin are discussed.  相似文献   

13.
S T Ferreira 《Biochemistry》1989,28(26):10066-10072
The fluorescence properties of the single tryptophan residue in whiting parvalbumin were used to probe the dynamics of the protein matrix. Ca2+ binding caused a blue-shift in the emission (from lambda max = 339 to 315 nm) and a 2.5-fold increase in quantum yield. The fluorescence decay was nonexponential in both Ca2(+)-free and Ca2(+)-bound parvalbumin and was best described by Lorentzian lifetime distributions centered around two components: a major long-lived component at 2-5 ns and a small subnanosecond component. Raising the temperature from 8 to 45 degrees C resulted in a decrease in both the center (average) and width (dispersion) of the major lifetime distribution component, whereas the center, width, and fractional intensity of the fast component increased with temperature. Arrhenius activation energies of 1.3 and 0.3 kcal/mol were obtained in the absence and in the presence of Ca2+, respectively, from the temperature dependence of the center of the major lifetime distribution component. Direct anisotropy decay measurements of local tryptophan rotations yielded an activation energy of 2.3 kcal/mol in Ca2(+)-depleted parvalbumin and indicated a correlation between rotational rates and lifetime distribution parameters (center and width). Ca2+ binding produced a decrease in the width of the major lifetime distribution component and a decrease in tryptophan rotational mobility within the protein. There was a rough correlation between these two parameters with changes in Ca2+ and temperature, so that both measurements may be taken to indicate that the structure of Ca2(+)-bound parvalbumin was more rigid than in Ca2(+)-depleted parvalbumin.  相似文献   

14.
Abstract Zinc (Zn2+) is the most abundant trace element in cells and is essential for a vast number of catalytic, structural, and regulatory processes. Mounting evidence indicates that like calcium (Ca2+), intracellular Zn2+ pools are redistributed for specific cellular functions. This occurs through the regulation of 24 Zn2+ transporters whose localization and expression is tissue and cell specific. We propose that the complement and regulation of Zn2+ transporters expressed within a given cell type reflects the function of the cell itself and comprises a 'Zn2+ network.' Importantly, increasing information implicates perturbations in the Zn2+ network with metabolic consequences and disease. Herein, we discuss our current understanding of Zn2+ transporters from the perspective of a Zn2+ network in four specific tissues with unique Zn2+ requirements (mammary gland, prostate, pancreas, and brain). Delineating the entire Zn2+ transporting network within the context of unique cellular Zn2+ needs is important in identifying critical gaps in our knowledge and improving our understanding of the consequences of Zn2+ dysregulation in human health and disease.  相似文献   

15.
Inhibitory mechanism of store-operated Ca2+ channels by zinc   总被引:2,自引:0,他引:2  
Capacitative calcium influx plays an important role in shaping the Ca(2+) response of various tissues and cell types. Inhibition by heavy metals is a hallmark of store-operated calcium channel (SOCC) activity. Paradoxically, although zinc is the only potentially physiological relevant ion, it is the least investigated in terms of inhibitory mechanism. In the present study, we characterize the inhibitory mechanism of the SOCC by Zn(2+) in the human salivary cell line, HSY, and rat salivary submandibular ducts and acini by monitoring SOCC activity using fluorescence imaging. Analysis of Zn(2+) inhibition indicated that Zn(2+) acts as a competitive inhibitor of Ca(2+) influx but does not permeate through the SOCC, suggesting that Zn(2+) interacts with an extracellular site of SOCC. Application of the reducing agents, dithiothreitol (DTT) and beta-mercaptoethanol, totally eliminated Zn(2+) and Cd(2+) inhibition of SOCC, suggesting that cysteines are part of the Zn(2+) and Cd(2+) binding site. Interestingly, reducing conditions failed to eliminate the inhibition of SOCC by La(3+) and Gd(3+), indicating that the Zn(2+) and lanthanides binding sites are distinct. Finally, we show that changes in redox potential and Zn(2+) are regulating, via SOCC activity, the agonist-induced Ca(2+) response in salivary ducts. The presence of a specific Zn(2+) site, responsive to physiological Zn(2+) and redox potential, may not only be instrumental for future structural studies of various SOCC candidates but may also reveal novel physiological aspects of the interaction between zinc, redox potential, and cellular Ca(2+) homeostasis.  相似文献   

16.
The crustacean hepatopancreas is an epithelial-lined, multifunctional organ that, among other activities, regulates the flow of calcium into and out of the animal's body throughout the life cycle. Transepithelial calcium flow across this epithelial cell layer occurs by the combination of calcium channels and cation exchangers at the apical pole of the cell and by an ATP-dependent, calcium ATPase in conjunction with a calcium channel and an Na+/Ca2+ antiporter in the basolateral cell region. The roles of intracellular organelles such as mitochondria, lysosomes, and endoplasmic reticulum (ER) in transepithelial calcium transport or in transient calcium sequestration are unclear, but may be involved in transferring cytosolic calcium from one cell pole to the other. The ER membrane has a complement of ATP-dependent calcium ATPases (SERCA) and calcium channels that regulate the uptake and possible transfer of calcium through this organelle during periods of intense calcium fluxes across the epithelium as a whole. This investigation characterized the mechanisms of calcium transport by lobster hepatopancreatic ER vesicles and the effects of drugs and heavy metals on them. Kinetic constants for 45Ca2+ influx under control conditions were K(n) (m)=10.38+/-1.01 microM, J(max)=14.75+/-1.27 pmol/mg protein x sec, and n=2.53+/-0.46. The Hill coefficient for 45Ca2+ influx under control conditions, approximating 2, suggests that approximately two calcium ions were transported for each transport cycle in the absence of ATP or the inhibitors. Addition of 1 mM ATP to the incubation medium significantly (P<0.01) elevated the rate of 45Ca2+ influx at all calcium activities used and retained the sigmoidal nature of the transport relationship. The kinetic constants for 45Ca2+ influx in the presence of 1 mM ATP were K(n) (m)=12.76+/-0.91 microM, J(max)=25.46+/-1.45 pmol/mg protein x sec, and n=1.95+/-0.15. Kinetic analyses of ER 65Zn2+ influx resulted in a sigmoidal relationship between transport rate and zinc activity under control conditions (K(n) (m)=38.63+/-0.52 microM, J(max)=19.35+/-0.17 pmol/mg protein x sec, n=1.81+/-0.03). The Addition of 1 mM ATP enhanced 65Zn2+ influx at each zinc activity, but maintained the overall sigmoidal nature of the kinetic relationship. The kinetic constants for zinc influx in the presence of 1 mM ATP were K(n) (m)=34.59+/-2.31 microM, J(max)=26.09+/-1.17 pmol/mg protein x sec, and n=1.96+/-0.17. Both sigmoidal and ATP-dependent calcium and zinc influxes by ER vesicles were reduced in the presence of thapsigargin and vanadate. This investigation found that lobster hepatopancreatic ER exhibited a thapsigargin- and vanadate-inhibited, SERCA-like, calcium ATPase. This transporter displayed cooperative calcium transport kinetics (Hill coefficient, n approximately 2.0) and was inhibited by the heavy metals zinc and copper, suggesting that the metals may reduce the binding and transport of calcium when they are present in the cytosol.  相似文献   

17.
The divalent cation binding properties of human prothymosin alpha, an abundant nuclear protein involved in cell proliferation, were evaluated. By using prothymosin alpha retardation on a weak cation chelating resin charged with various divalent cations, specific binding of Zn2+ ions by prothymosin alpha was observed. This finding was further confirmed by the equilibrium dialysis analysis which demonstrated that, within the micromolar range of Zn2+ concentrations, prothymosin alpha could bind up to three zinc ions in the presence of 100 mM NaCl and up to 13 zinc ions in the absence of NaCl. Equilibrium dialysis analysis also revealed that prothymosin alpha could bind Ca2+, although the parameters of Ca2+ binding by prothymosin alpha were less pronounced than those of Zn2+ binding in terms of the number of metal ions bound, the KD values, and the resistance of the bound metal ions to 100 mM NaCl. The effects of Zn2+ and Ca2+ on the interaction of prothymosin alpha with its putative partners, Rev of HIV type 1 and histone H1, were examined. We demonstrated that Rev binds prothymosin alpha, and that prothymosin alpha binding to Rev but not to histone H1 was significantly enhanced in the presence of zinc and calcium ions. Our data suggest that the modes of prothymosin alpha interaction with Rev and histone H1 are distinct and that the observed zinc and calcium-binding properties of prothymosin alpha might be functionally relevant.  相似文献   

18.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

19.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

20.
The effect of extracellular calcium (Ca2+) on the cellular action of forskolin was studied using a Na+, K(+)-ATPase inhibitor ouabain in rat renal papillary collecting tubule cells in culture. Forskolin-induced cAMP production was enhanced by the pretreatment of cells with ouabain, providing that a dose-dependent curve with forskolin shifted to the left. The enhancement by ouabain of cellular cAMP production in response to forskolin was totally blunted by cotreatment with cobalt, verapamil, or Ca2(+)-free medium containing 1 mM EGTA. In addition, two dissimilar antagonists of calmodulin, namely trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W - 7), attenuated the ouabain's effect on cAMP production in response to forskolin. These results therefore indicate that ouabain enhances the activation of adenylate cyclase by forskolin, mediated through cellular free Ca2+, in renal papillary collecting tubule cells, and that extracellular Ca2+ is an important source for cellular Ca2+ mobilization by ouabain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号