首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of SO2 fumigation (2 ppm, v/v) on photosynthesisin spinach leaves in vivo was investigated by measuring Chla fluorescence (OIDP transient) and the electron paramagneticresonance (EPR) signal I. SO2 fumigation raised the I levelto yield the ID dip and suppressed the DP transient before anyvisible damage occurred in the leaf. In SO2-fumigated leaves,the time course of EPR signal I indicates that reduction ofP700 by white light illumination was inhibited but dark reductionof P700 was not significantly affected. Photosynthetic O2 evolutionwas also inhibited by SO2 fumigation. All of these effects werereversible after removal of SO2. The variable part of the fluorescencein the presence of DCMU was only slightly affected and decreasedas the fumigation time increased. We concluded that SO2 fumigationreversibly inhibits the photosynthetic water-splitting enzymesystem and it injures the reaction center of PS II in vivo whenthe fumigation time is prolonged. We discussed the role of possible toxicants derived from SO2within the leaf on the basis of the SO2 action on Chl a fluorescence. (Received December 8, 1983; Accepted May 7, 1984)  相似文献   

2.
The phytotoxic effects of sulfur dioxide (SO2) were investigatedby fumigating spinach plants with SO2. Inhibition of 2,6-dichloroindophenol(DCIP) photoreduction was observed in spinach chloroplasts isolatedfrom fumigated leaves. NADP and DCIP photoreductions were inhibitedto a similar extent by fumigation with 2.0 ppm SO2 but electronflow from reduced DCIP to NADP was not affected. When electronflow from H2O to NADP was inhibited by 36%, a 39% inhibitionof non-cyclic photophosphorylation was observed. However, phenazinemethosulfate(PMS)-catalyzed cyclic photophosphorylation wasas active as in the control chloroplasts. Moreover, in the presenceof PMS, no significant suppression was observed in the extentof light-induced H+ uptake or in the rate of H+ efflux in chloroplasts.From these results, it can be concluded that SO2 inhibits theelectron flow driven by photosystem II when plants have beenfumigated with SO2. In spinach leaves fumigated with SO2, the rate of photosyntheticO2 evolution was reduced under light-limited conditions, whilethe rate of respiratory O2 uptake changed slightly. (Received February 8, 1979; )  相似文献   

3.
The formation of singlet molecular oxygen (1O2) in illuminatedchloroplasts and the effects of 1O2 on oxidation or destructionof components and functional integrity of chloroplasts werestudied. The rate of photoreduction of 2,6-dichloroindophenol(DCIP) and the extent of the 515-nm absorbance change were decreasedby light irradiation and by xanthine oxidase treatment. Malondialdehyde(MDA) formation, an indicator of lipid peroxidation, was observedin the light-irradiated chloroplast fragments, but not in thexanthine-xanthine oxidase-treated chloroplast fragments. MDAformation was absent under anaerobic conditions. MDA formation was stimulated when electron transfer on the oxidizingside of photosystem II (or I) was inhibited or inactivated bycarbonylcyanide m-chlorophenylhydrazone (CCCP), Tris-treatment,prolonged illumination, etc. MDA formation was also stimulatedby 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) when electrontransfer between water and the reaction center of photosystemII was intact. CCCPor DCMU-stimulated MDA formation was inhibitedby 1,4-diazabicyclo[2.2.2]octane, a quencher of singlet molecularoxygen (1O2). DCMU and electron donors for photosystem II, suchas ascorbate, hydroquinone and semicarbazide, inhibited MDAformation by illumination of the Tris-washed or CCCP-poisonedchloroplast fragments. Reduced DCIP, an electron donor for photosystemI, also inhibited MDA formation in the presence of DCMU. These results lead to the conclusion that MDA formation wasinitiated by 1O2 formed in illuminated chloroplasts. Of thethree mechanisms discussed for 1O2 generation in illuminatedchloroplasts, the formation by the electron transfer reactionbetween superoxide anion radical and the oxidant formed on theoxidizing side of photosystem II (or I) is mostimportant. (Received March 31, 1975; )  相似文献   

4.
When chloroplasts isolated from Farfugium japonicum (Japanesesilver) leaves were used as an enzyme source, the activity ofthe enzyme system producing C6-aldehydes (cis-3-hexenal andn-hexanal) from C18-unsaturated fatty acids (linolenic and linoleicacids) decreased upon treatment with LAHase from potato. Thisenzyme system could not be separated from chlorophylls and lipidsby detergent treatment and was not affected by light illumination,CCCP or DCMU. The activity of the enzyme system was inhibitedby MB and NTB used as a redox reagent, SKF 525-A as an oxidaseinhibitor and DABCO as a quencher of singlet oxygen, but notby DCIP, PMS and SOD. These data suggest that; i) interactionof the enzyme system with lipids is required for maximal enzymeactivity, ii) this enzyme system may involve electron mediator(s),and iii) singlet oxygen takes part in the enzyme reaction. (Received October 28, 1977; )  相似文献   

5.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

6.
Illuminated chloroplasts isolated from SO2-fumigated spinachleaves accumulated more H2O2 than those from non-fumigated ones.This H2O2 formation was dependent on light and was inhibitedby DCMU. It also was depressed by cytochrome c and superoxidedismutase (EC 1.15.1.1 [EC] ). The addition of sulfite to rupturedchloroplasts isolated from non-fumigated leaves caused an H2O2accumulation that accompanied O2 uptake. Spinach leaves losttheir catalase (EC 1.11.1.6 [EC] ), ascorbate peroxidase and glutathionereductase (EC 1.6.4.2 [EC] ) activities at the beginning of SO2 fumigation,when H2O2 was accumulated. These results suggest that the accumulationof H2O2 in SO2-fumigated spinach leaves is caused by the increasein O2production, the precursor for H2O2, with a sulfite-mediatedchain reaction at the reducing site of photosystem I, and byinactivation of the H2O2 scavenging system. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

7.
Chloroplast from greening potato tuber showed good photosynthetic capacity. The evolution of O2 was dependent upon the intensity of light. A light intensity of 30 lux gave maximum O2 evolution. At higher intensities inhibition was observed. The presence of bicarbonate in the reaction mixture was essential for O2 evolution. NADP was found to be a potent inhibitor of O2 evolution in this system. NADP and 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) inhibited the O2 evolution completely at a 3 μm concentration level, which was reversed by oxidized 2,6-dichlorophenol-indophenol (DCIP). Cyanide (CN)-treated chloroplasts showed full O2 evolution capacity, when a lipophilic electron acceptor like N-tetramethyl-p-phenylenediamine (TMPD) or DCIP was used along with ferricyanide. Ferricyanide alone showed only 20% reduction. NADP or DCMU could inhibit O2 evolution only when TMPD was the acceptor but not with DCIP. Photosystem II (PS II) isolated from these chloroplasts also showed inhibition by NADP or DCMU and its reversal by DCIP. Here also the evolution of O2 with only TMPD as acceptor was sensitive to NADP or DCMU. In the presence of added silicotungstate in PS II NADP or DCMU did not affect ferricyanide reduction or oxygen evolution. The chloroplasts were able to bind exogenously added NADP to the extent of 120 nmol/mg chlorophyll. It is concluded that the site of inhibition of NADP is the same as in DCMU, and it is between the DCIP and TMPD acceptor site in the electron transport from the quencher (Q) to plastoquinone (PQ).  相似文献   

8.
Normal Euglena chloroplasts contained 1 atom of Mn per 47±8chlorophyll molecules. The manganese content of chloroplastswas decreased by heat treatment. After complete removal of manganeseby incubation at 45°C for 5 min, Hill activity with DPIPas electron acceptor was abolished, but the activity of DPIPphotoreduction with diphenylcarbazide as electron donor wasunaffected. Hill activity was inactivated by incubating Euglena chloroplastsat alkaline pH. The presence of a high concentration of Trisduring incubation of chloroplasts at an alkaline pH had no additionaleffect on the activity drop. Donor-supported DPIP photoreduction in heated Euglena chloroplasts,as well as the normal Hill reaction in untreated chloroplasts,was inhibited by DCMU, HOQNO and ioxynil which block electrontransport at the reducing side of system II. These reactionswere also inhibited by another group of inhibitors; CCCP, salicylaldoxime,antimycin A and azide, which block electron transport at a sitebetween the electron carriers, Y1 and Y2 located on the oxidizingside of system II. Possible sites of inhibition by heat treatment and by inhibitorsand sites for entry of electrons from artificial electron donorsin the photosynthetic electron transport chain, especially inrelation to the functional site of endogenous manganese in chloroplasts,were proposed. (Received October 30, 1971; )  相似文献   

9.
The effects of Mn2+ on aerobic photobleaching of carotenoids, on photoreduction of 2,6-dichlorophenolindophenol (DCIP) and on fluorescence above 600 mμ of spinach chloroplasts washed with 0.8 M Tris-HC1 buffer were investigated. Carotenoids (mostly carotenes, lutein and violaxanthin) in the Tris-washed chloroplasts were irreversibly bleached by illumination with red light, while carotenoids in normal chloroplasts prepared with a low concentration of Tris-HC1 underwent no bleaching upon illumination. The photobleaching of carotenoids observed with Tris-washed chloroplasts was inhibited by Mn2+ (MnCl2 or MnSO4) as well as by some inhibitors of the Hill reaction such as dichlorophenyl-1,1-dimethylurea (DCMU), methylthio-4,6-bis-isopropylamino-s-triazine and o-phenanthroline or by reducing agents such as ascorbate plus tetramethyl-p-phenylene diamine (TMPD). DCIP photoreduction, which was deactivated by Tris, was reactivated to 50–80% of the rate for normal chloroplasts upon addition of Mn2+. The restored photoreduction of DCIP was inhibited by DCMU and carbonylcyanide m-chlorophenylhydrazone (CCCP). The steady-state fluorescence yield of normal chloroplasts measured at room temperature was lowered by Tris treatment, and the decreased yield was restored by adding Mn2+ as well as ascorbate plus TMPD. CCCP also lowered the yield; the yield was recovered by adding ascorbate plus TMPD. Determination of manganese in normal and Tris-washed chloroplasts showed that 30% of the manganese in chloroplast was removed with Tris. It was postulated that Mn2+ functions in the electron transport on the oxidizing side of Photosystem II at a site between water and an electron carrier (Y). CCCP as well as Tris inhibits the reduction of Y+ by Mn2+, and carotenoids are oxidized by Y+ which is reduced by ascorbate plus TMPD.  相似文献   

10.
In SO2-fumigated spinach leaves under light, chloroplast SHenzymes, glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD)(EC 1.2.1.13 [EC] ), ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19 [EC] )and fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11 [EC] ) weremore remarkably inactivated than other chloroplast enzymes.Their activities recovered after removal of SO2. The inactivationparalleled light-dependent CO2-fixation in spinach leaves. Inilluminated chloroplasts isolated from SO2-fumigated spinachleaves, NADP-GAPD and Ru5PK were more specifically in activatedthan other chloroplast enzymes. These two enzymes could be protectedfrom the inactivation by adding catalase. The NADP-GAPD inactivationwas suppressed by DCMU, cytochrome c or anaerobic conditions.By adding thiol compounds, the NADP-GAPD inactivation was dischargedand the activity increased. In chloroplasts or crude extractsfrom non-fumigated spinach leaves, NADP-GAPD and Ru5PK weremore strongly inhibited by externally added H2O2 than otherchloroplast enzymes. All results supported the idea that thesuppression of photosynthesis at the beginning of SO2 fumigationwas caused by the reversible inhibition of chloroplast SH enzymewith H2O2. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

11.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

12.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

13.
Saplings of Azadirachta indica Juss. were exposed to sulphurdioxide (SO2) and some of the exposed saplings were treatedwith ascorbic acid (AA). The SO2 exposure alone inflicted heavydamage to the chloroplasts and cytoplasm in palisade cells.The degeneration of chloroplasts was followed by the rupturingof the outer envelope and the extrusion of plastoglobuli andstarch into the cytoplasm. AA treatment counteracted to a certainextent the toxic effects of SO2 on the ultrastructure of chloroplasts. Azadirachta indica, Sulphur dioxide, ascorbic acid, chloroplast, mitigation  相似文献   

14.
Laminar pulvini of bean (Phaseolus vulgaris L.) contain numerouschloroplasts in cells of their motor tissue. The quantitativerelationships of the chloroplast pigments, chlorophyll a andb, ß-carotene, lutein, neoxanthin as well as the xanthophyllcycle carotenoids (violaxanthin, antheraxanthin and zeaxanthin)were similar to those of mesophyll chloroplasts from leafletlaminae. Exposure of pulvinules to light caused deepoxidationof violaxanthin to zeaxanthin, showing that the xanthophyllcycle is functioning. Chlorophyll fluorescence analysis of pulvinulesconfirmed that their chloroplasts are capable of both photosyntheticelectron transport and non-photochemical fluorescence quenching,showing that they build up a considerable transthylakoid protongradient in the light. Application of DCMU to excised pulvinulesand laminar discs, as well as to pulvinules of intact, attachedterminal leaflets blocked electron transport and fluorescencequenching. Application of the uncoupler CCCP to intact pulvinulesalso prevented non-photochemical fluorescence quenching. Therate of movement of the low-light-adapted terminal leaflet inresponse to exposure of its pulvinule to overhead red light(500 µmol m–2 s–1) was reduced when the pulvinulewas pretreated with DCMU. The pulvinar response to overheadblue light (50 µmol –2 s–1), which is morepronounced than to red light, was not affected by similar pretreatmentwith DCMU. Pretreatment with CCCP caused a short lag in theresponse to red light, but did not affect its subsequent rate.The results suggest that the pulvinar response to red, but notto blue light, requires non-cyclic electron transport and theresulting generation of ATP Key words: Leaf movements, light, non-cyclic electron transport, Phaseolus, pulvinar chloroplasts  相似文献   

15.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochromef of NO2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome.f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; )  相似文献   

16.
DPIP-photoreduction by membrane fragments of Anabaena cylindricaand A. variabilis was studied to determine which step(s) ofthe Hill reaction system is inactivated on incubation of themembrane fragments in a medium with a high water concentration(cf. 1). Supplementary experiments were done with Anacystisnidulans and Plectonema boryanum. After inactivation of the Hill system at a high water concentration,DPIP-photo-reducing activity was strongly enhanced in the A.variabilis system but less so in the A. cylindrica system byadding DPC, NH2OH, Mn++ or H202. The activity supported by theadded electron donor was inhibited by DCMU. The steady statelevel of chlorophyll fluorescence was lowered by the inactivationtreatment. In the A. variabilis system, the fluorescence yieldincreased to the original level on the addition of an electrondonor. In the A. cylindrica system, the yield was not so stronglyenhanced as in the A. variabilis system. We inferred that, in A. variabilis, inactivation occurs in thereaction system before the site which receives electrons fromartificial donors, probably including the water oxidation system.In A. cylindrica, besides this site, a site at or near the photochemicalsystem is also blocked. Similar types of inactivation were observed in DPIP-Hill reactionsusing Anacystis nidulans and Plectonema boryanum preparations.The characteristic stability of the Hill reaction system observedin two Anabaena preparations is probably common to the blue-greenalgae. (Received December 10, 1971; )  相似文献   

17.
The effects of copper on photosynthetic electron transfer systemsin isolated spinach chloroplasts were studied. Two differentinhibitions were observed. First, copper markedly inhibitedferredoxin-catalyzed reactions such as NADP+ photoreduction.The concentration required for 50% inhibition was about 2 µMof cupric sulfate. However, electron flow from reduced 2,6-dichloroindophenol(DCIP) to methyl viologen was not affected. The dissociationconstant between ferredoxin and ferredoxin-NADP+ reductase wasunchanged in the presence of 2.5 µM of cupric sulfate.In enzymic reaction systems, the ferredoxin-dependent electronflow from NADPH to cytochrome c was also strongly inhibitedin the presence of cupric sulfate, while DCIP reduction withNADPH as the electron donor was not affected. Second, DCIP photoreductionwas weakly blocked by copper and the lost activity could notbe recovered by adding 1,5-diphenylcarbazide (DPC). It can be concluded that copper directly interacted with ferredoxincausing inhibition of ferredoxin-dependent reactions. Further,copper caused weak inactivation between the oxidizing side ofthe reaction center of photosystem II and the electron donatingsite of DPC. (Received August 8, 1977; )  相似文献   

18.
19.
Photosynthetic Properties of Guard Cell Protoplasts from Vicia faba L.   总被引:3,自引:0,他引:3  
Guard cell protoplasts were isolated enzymatically from theepidermis of Vicia faba L. and their photosynthetic activitieswere investigated. Time courses of light-induced changes inthe chlorophyll a fluorescence intensity of these protoplastsshowed essentially the same induction kinetics as found formesophyll protoplasts of Vicia. The transient change in thefluorescence intensity was affected by DCMU, an inhibitor ofphotosystem II; by phenylmercuric acetate, an inhibitor of ferredoxinand ferredoxin NADP reductase; and by methyl viologen, an acceptorof photosystem I. Low temperature (77 K) emission spectra ofthe protoplasts had peaks at 684 and 735 nm and a shoulder near695 nm. A high O2 uptake (175 µmol mg–1 Chl hr–1)was observed in guard cell protoplasts kept in darkness, whichwas inhibited by 2 mM KCN or NaN3 by about 60%. On illumination,this O2 uptake was partially or completely suppressed, but itssuppression was removed by DCMU, which indicates that oxygenwas evolved (150 µmol mg–1 Chl hr–1) photosynthetically.We concluded that both photosystems I and II function in guardcell chloroplasts and that these protoplasts have high respiratoryactivity. (Received January 30, 1982; Accepted May 15, 1982)  相似文献   

20.
The effects of GA fixation on electron transfers in photosystemsI and II in photosynthesis and energy dependent reactions ofchloroplasts, such as changes in light scattering, H+ uptakeand 515-nm absorbance, were investigated. Fixation of chloroplastswith GA resulted in a lowering of the DCIP and MV photoreductions.DCIP photoreduction activity in fixed chloroplasts was not restoredin the presence of DPC, an electron donor to photosystem II,but was significantly stimulated by DPC when chloroplasts werefixed after aging. The results suggest that the inhibitory effectof GA fixation on photosystem II differs in its mechanism fromthose of treatments such as heating, Tris-washing and aging.The oxidation-reduction reaction of P700 was depressed by GAfixation. Energy dependent reactions in fixed chloroplasts were more markedlydepressed than were electron transfers. Fixed chloroplasts showeda slight conformational response in the presence of PMS. Analysis of the emission spectrum and the induction of chlorophylla fluorescence in fixed chloroplasts suggested that the twopigment systems were partially disordered and that the correspondingprimary photochemical processes were inhibited. (Received November 21, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号