首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in the local activation of the glucocorticoid receptor by converting inactive 11-ketoglucocorticoids to active 11beta-hydroxyglucocorticoids is well established. Currently, 11beta-HSD1 is considered a promising target for treatment of obese and diabetic patients. Here, we demonstrate a role of 11beta-HSD1 in the metabolism of 7-ketocholesterol (7KC), the major dietary oxysterol. Comparison of recombinant 11beta-HSD1, transiently expressed in human embryonic kidney 293 cells, revealed the stereo-specific interconversion of 7KC and 7beta-hydroxycholesterol by rat and human 11beta-HSD1, whereas the hamster enzyme interconverted 7alpha-hydroxycholesterol, 7beta-hydroxycholesterol, and 7KC. In contrast to lysates, which efficiently catalyzed both oxidation and reduction, intact cells exclusively reduced 7KC. These findings were confirmed using rat and hamster liver homogenates, intact rat hepatocytes, and intact hamster liver tissue slices. Reduction of 7KC was abolished upon inhibition of 11beta-HSD1 by carbenoxolone (CBX) or 2'-hydroxyflavanone. In vivo, after gavage feeding rats, 7KC rapidly appeared in the liver and was converted to 7beta-hydroxycholesterol. CBX significantly decreased the ratio of 7beta-hydroxycholesterol to 7KC, supporting the evidence from cell culture experiments for 11beta-HSD1-dependent reduction of 7KC to 7beta-hydroxycholesterol. Upon inhibition of 11beta-HSD1 by CBX, 7KC tended to accumulate in the liver, and plasma 7KC concentration increased. Together, our results suggest that 11beta-HSD1 efficiently catalyzes the first step in the rapid hepatic metabolism of dietary 7KC, which may explain why dietary 7KC has little or no effect on the development of atherosclerosis.  相似文献   

2.
Human 11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1) is an ER-localized membrane protein that catalyzes the interconversion of cortisone and cortisol. In adipose tissue, excessive cortisol production through 11beta-HSD1 activity has been implicated in the pathogenesis of type II diabetes and obesity. We report here biophysical, kinetic, mutagenesis, and structural data on two ternary complexes of 11beta-HSD1. The combined results reveal flexible active site interactions relevant to glucocorticoid recognition and demonstrate how four 11beta-HSD1 C termini converge to form an as yet uncharacterized tetramerization motif. A C-terminal Pro-Cys motif is localized at the center of the tetramer and forms reversible enzyme disulfides that alter enzyme activity. Conformational flexibility at the tetramerization interface is coupled to structural changes at the enzyme active site suggesting how the central Pro-Cys motif may regulate enzyme activity. Together, the crystallographic and biophysical data provide a structural framework for understanding 11beta-HSD1 activities and will ultimately facilitate the development of specific inhibitors.  相似文献   

3.
11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) dictates specificity for the mineralocorticoid receptor (MR) by converting the active steroid cortisol to cortisone in man (corticosterone to 11-dehydrocorticosterone in rodents), leaving aldosterone to occupy the MR. However cortisol is the principal circulating glucocorticoid in man and 11 beta-HSD, distributed in a tissue specific fashion, may represent a powerful mechanism in regulating exposure of active steroid to the glucocorticoid receptor (GR). A detailed localization study of 11 beta-HSD gene expression and activity in numerous rat tissues has been performed and compared with the presence of GR mRNA. 11 beta-HSD mRNA (1.4 kB) measured by hybridization to a cDNA derived from hepatic 11 beta-HSD, and enzyme activity, measured by percentage conversion of [3H]corticosterone to [3H]11-dehydrocorticosterone by tissue homogenate, was widespread, present in all tissues studied except spleen, brain cortex and heart. There was a close correlation between tissue 11 beta-HSD mRNA levels and activity (r = 0.91, P less than 0.001) suggesting pretranslational regulation of the enzyme at a tissue level. There was also close co-localization of GR mRNA (7 kB), measured by hybridization to a rat GR cRNA probe, and enzyme mRNA/activity in every tissue studied except heart and brain cortex in which GR mRNA was found. In the mineralocorticoid target tissues kidney and colon, additional 11 beta-HSD mRNA bands were seen (kidney 1.8 kB, colon 3.4 kB), suggesting the presence of multiple dehydrogenase species. 11 beta-HSD is widely distributed and suitably placed to modulate ligand occupancy of the GR. The possibility of multiple dehydrogenase species in mineralocorticoid target tissues is consistent with the hypothesis that the ubiquitous 'native' 1.4 kB hepatic enzyme regulates the GR, and these separate dehydrogenases regulate the MR.  相似文献   

4.
5.
In squirrel monkeys (Saimiri spp.), cortisol circulates at levels much higher than those seen in man and other Old World primates, but squirrel monkeys exhibit no physiologic signs of the mineralocorticoid effects of cortisol. These observations suggest that squirrel monkeys have mechanisms for protection of the mineralocorticoid receptor (MR) from these high levels of cortisol. We previously showed that the serum cortisol to cortisone ratio in these animals is low relative to that in human serum, suggesting that production of the MR protective enzyme, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), is increased in squirrel monkeys. Here, we directly evaluate whether increased production of 11beta-HSD2, which inactivates cortisol to cortisone, is a mechanism for protection of MR. In vitro assays showed that 11beta-HSD2 activity in squirrel monkey kidney microsomes was 3 to 7 times higher than that seen in kidney microsomes from pig or rabbit. 11beta-HSD2 protein detected by Western blot analysis was 4 to 9 times greater in squirrel monkey microsomes than in pig or rabbit microsomes. Comparison of the effect of expression of either human or squirrel monkey 11beta-HSD2 on MR transactivation activity showed similar inhibition of MR response to cortisol by both enzymes, indicating that the intrinsic activities of the human and squirrel monkey enzymes are similar. These findings suggest that one mechanism by which squirrel monkeys protect the MR from activation by high cortisol levels in the kidney is by upregulation of 11beta-HSD2 activity through increased production of the enzyme.  相似文献   

6.
The cDNA coding for the human 3beta-hydroxy-5-ene steroid dehydrogenase/5-ene-4-ene steroid isomerase (3beta-HSD) has been expressed in yeast. When expressed from identical vectors except for the coding sequence, the specific activity of the type I is lower than that of the type II enzyme. A mutant of the human 3beta-HSD type II lacking the putative membrane spanning domain 1 was generated by site directed mutagenesis: its apparent K(m) for pregnenolone (PREG) is significantly increased and its V reduced to the level of the type I enzyme. The influence of the kinetic properties of 3beta-HSD in the accumulation of 17alpha-hydroxyprogesterone was probed by co-expression of the bovine 17alpha-hydroxylase cytochrome P450 (P45017alpha) cDNA. The metabolism of PREG was followed with time using the membrane fraction. Kinetic properties of the 3beta-HSD were modulated such that its activity was in excess, limiting or balanced with respect to the activity of the P45017alpha and the accumulation of intermediates and products recorded. Conditions for the generation of the by-products resulting from the 17,20-Lyase activity of the P45017alpha were found. The potential applications of the system are discussed.  相似文献   

7.
Proper glucocorticoid exposure in utero is vital to normal fetal organ growth and maturation. The human placental 11 beta-hydroxysteroid dehydrogenase type 2 enzyme (11 beta-HSD2) catalyzes the unidirectional conversion of cortisol to its inert metabolite cortisone, thereby controlling fetal exposure to maternal cortisol. The present study examined the effect of zinc and the relatively specific sulfhydryl modifying reagent N-ethylmaleimide (NEM) on the activity of 11 beta-HSD2 in human placental microsomes. Enzyme activity, reflected by the rate of conversion of cortisol to cortisone, was inactivated by NEM (IC(50)=10 microM), while the activity was markedly increased by the sulfhydryl protecting reagent dithiothreitol (DTT; EC(50)=1 mM). Furthermore, DTT blocked the NEM-induced inhibition of 11 beta-HSD2 activity. Taken together, these results suggested that the sulfhydryl (SH) group(s) of the microsomal 11 beta-HSD2 may be critical for enzyme activity. Zn(2+) also inactivated enzyme activity (IC(50)=2.5 microM), but through a novel mechanism not involving the SH groups. In addition, prior incubation of human placental microsomes with NAD(+) (cofactor) but not cortisol (substrate) resulted in a concentration-dependent increase (EC(50)=8 microM) in 11 beta-HSD2 activity, indicating that binding of NAD(+) to the microsomal 11 beta-HSD2 facilitated the conversion of cortisol to cortisone. Thus, this finding substantiates the previously proposed concept that a compulsorily ordered ternary complex mechanism may operate for 11 beta-HSD2, with NAD(+) binding first, followed by a conformational change allowing cortisol binding with high affinity. Collectively, the present results suggest that cellular mechanisms of SH group modification and intracellular levels of Zn(2+) may play an important role in regulation of placental 11 beta-HSD2 activity.  相似文献   

8.
Temkin S  Nacharaju VL  Hellman M  Lee YC  Abulafia O 《Steroids》2006,71(11-12):1019-1023
In the ovary cortisol-cortisone inter-conversion is catalyzed by the enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Its role in carcinomas of human ovary is unknown. The majority of ovarian cancers are derived from ovarian surface epithelium and the inflammation caused by successive ovulation seems to a play a role in the development of cancer. Cortisol is known to act as anti-inflammatory agent and its metabolism by type 1 and type 11beta-HSD may control the inflammatory action by cortisol in ovary. We undertook this study to investigate type 2 11beta-HSD activity which functions exclusively oxidative direction, in normal ovarian tissue compared to ovarian epithelial cancer. Ovarian tissue was obtained from patients undergoing hysterectomy for both benign and malignant disease. Tissue was placed immediately on dry ice and subsequently transferred to a freezer where they were maintained at -70 degrees C. NAD dependent 11beta-HSD activity was then determined in this tissue. T-test was performed to determine statistical significance. Mean type 2 enzyme activity was 0.87 +/- 1.65 pmol/min g tissue in normal ovarian tissue versus a mean enzyme activity of 2.96 +/- 1.37 pmol/mim g tissue in from cancer specimens. This difference was statistically significant with a p-value of 0.03. Type 2 1beta-HSD activity in ovarian cancer specimens was significantly higher than enzyme activity measured in normal post-menopausal ovarian tissue. Decreased cortisol levels due type 2 1beta-HSD activity may play a role neoplastic transformation as well as tumor proliferation in ovarian cancer by eliminating anti-inflammatory action of cortisol.  相似文献   

9.
The human enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the reversible oxidoreduction of 11beta-OH/11-oxo groups of glucocorticoid hormones. Besides this important endocrinological property, the type 1 isozyme (11beta-HSD1) mediates reductive phase I reactions of several carbonyl group bearing xenobiotics, including drugs, insecticides and carcinogens. The aim of this study was to explore novel substrate specificities of human 11beta-HSD1, using heterologously expressed protein in the yeast system Pichia pastoris. In addition to established phase I xenobiotic substrates, it is now demonstrated that transformed yeast strains catalyze the reduction of ketoprofen to its hydroxy metabolite, and the oxidation of the prodrug DFU-lactol to the pharmacologically active lactone compound. Purified recombinant 11beta-HSD1 mediated oxidative reactions, however, the labile reductive activity component could not be maintained. In conclusion, evidence is provided that human 11beta-HSD1 in vitro is involved in phase I reactions of anti-inflammatory non-steroidal drugs like ketoprofen and DFU-lactol.  相似文献   

10.
11beta-hydroxysteroid dehydrogenase type I (11beta-HSD1), an NADPH-dependent reductase, functions in intact cells to convert inactive 11-keto metabolites of glucocorticoids into biologically active glucocorticoids. The enzyme is thus capable of amplifying glucocorticoid action in tissues in which it is expressed. In the experiments presented here, we show that 11beta-HSD1 is expressed in the murine thymus and that expression increases from late fetal development to maximal levels in the adult thymus. Quantitative real time-PCR, immunoblots, and assays of enzymatic activity reveal adult thymic expression of 11beta-HSD1 mRNA and protein at levels approximately 6-7% of those observed in liver. Immunofluorescence experiments show that the enzyme is expressed in the medullary thymocytes and thymocytes present at the corticomedullary junction. These experiments extend our recognition of 11beta-HSD1 expression in cells of the immune system and lend support to the notion that glucocorticoid signaling and amplification of those signals by regeneration of active glucocorticoids from inactive 11-keto metabolites might impact intrathymic T cell development and the establishment of the immune repertoire.  相似文献   

11.
The human placental 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) is believed to play a key role in fetal development since this enzyme protects the fetus from exposure to high levels of maternal cortisol by virtue of converting maternal cortisol to its inert metabolite cortisone. The present study was undertaken to examine the effect of ATP on 11beta-HSD2 activity in human placental microsomes. Enzyme activity, reflected by the rate of conversion of cortisol to cortisone, was stimulated more than six-fold by 0.5 mM ATP (EC(50) = 0.2 mM). Such stimulation appears to be mediated through a novel mechanism independent of ATP-induced phosphorylation of the reaction components since AMP-PNP, a non-hydrolyzable analogue of ATP, was equally effective. The ATP-induced stimulation of 11beta-HSD2 activity is adenine nucleotide specific in that a similar stimulation was observed with ADP and AMP but not with CTP, GTP, or UTP. Furthermore, ATP increased the maximal velocity (V(max)) of the 11beta-HSD2 catalyzed conversion of cortisol to cortisone without altering the apparent K(m) of 11beta-HSD2 for cortisol, suggesting that ATP may stimulate enzyme activity by interacting with the enzyme at a site other than that involved in substrate binding. In conclusion, the present study has identified ATP as a novel regulator of human placental 11beta-HSD2 in vitro. It is conceivable that intracellular ATP may have a profound effect on 11beta-HSD2 function in vivo.  相似文献   

12.
11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD 1) is a microsomal enzyme that catalyzes the reversible interconversion of receptor-active 11-hydroxy glucocorticoids (cortisol) to their receptor-inactive 11-oxo metabolites (cortisone). However, the physiological role of 11beta-HSD 1 as prereceptor control device in regulating access of glucocorticoid hormones to the glucocorticoid receptor remains obscure in light of its low substrate affinities, which is in contrast to low glucocorticoid plasma levels and low Kd values of the receptors to cortisol. To solve this enigma, we performed detailed kinetic analyses with a homogeneously purified 11beta-HSD 1 from human liver. The membrane-bound enzyme was successfully obtained in an active state by a purification procedure that took advantage of a gentle solubilization method as well as providing a favorable detergent surrounding during the various chromatographic steps. The identity of purified 11beta-HSD 1 was proven by determination of enzymatic activity, N-terminal amino acid sequencing, and immunoblot analysis. By gel-permeation chromatography we could demonstrate that 11beta-HSD 1 is active as a dimeric enzyme. The cDNA for the enzyme was cloned from a human liver cDNA library and shown to be homologous to that previously characterized in human testis. Interestingly, 11beta-HSD 1 exhibits Michaelis-Menten kinetics with cortisol and corticosterone (11beta-dehydrogenation activity) but cooperative kinetics with cortisone and dehydrocorticosterone (11-oxoreducing activity). Accordingly, this enzyme dynamically adapts to low (nanomolar) as well as to high (micromolar) substrate concentrations, thereby providing the fine-tuning required as a consequence of great variations in circadian plasma glucocorticoid levels.  相似文献   

13.
14.
15.
Hexose-6-phosphate dehydrogenase (H6PDH) has been shown to stimulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1)-dependent local regeneration of active glucocorticoids. Here, we show that coexpression with H6PDH results in a dramatic shift from 11beta-HSD1 oxidase to reductase activity without affecting the activity of the endoplasmic reticular enzyme 17beta-HSD2. Immunoprecipitation experiments revealed coprecipitation of H6PDH with 11beta-HSD1 but not with the related enzymes 11beta-HSD2 and 17beta-HSD2, suggesting a specific interaction between H6PDH and 11beta-HSD1. The use of the 11beta-HSD1/11beta-HSD2 chimera indicates that the N-terminal 39 residues of 11beta-HSD1 are sufficient for interaction with H6PDH. An important role of the N-terminus was indicated further by the significantly stronger interaction of 11beta-HSD1 mutant Y18-21A with H6PDH compared to wild-type 11beta-HSD1. The protein-protein interaction and the involvement of the N-terminus of 11beta-HSD1 were confirmed by Far-Western blotting. Finally, fluorescence resonance energy transfer (FRET) measurements of HEK-293 cells expressing fluorescently labeled proteins provided evidence for an interaction between 11beta-HSD1 and H6PDH in intact cells. Thus, using three different methods, we provide strong evidence that the functional coupling between 11beta-HSD1 and H6PDH involves a direct physical interaction of the two proteins.  相似文献   

16.
Nwe KH  Hamid A  Morat PB  Khalid BA 《Steroids》2000,65(1):40-45
11Beta-hydroxysteroid dehydrogenase (11beta-HSD) Type I enzyme is found in testis and liver. In Leydig cell cultures, 11beta-HSD activity is reported to be primarily oxidative while another report concluded that is primarily reductive. Hepatic 11beta-HSD preferentially catalyzes reduction and the reaction direction is unaffected by the external factors. Recent analysis of testicular 11beta-HSD revealed two kinetically distinct components. In the present study, various steroid hormones or glycyrrhizic acid (GCA), given for 1 week, or thyroxine given for 5 weeks to normal intact rats had different effects on the 11beta-HSD oxidative activity in testis and liver. Deoxycorticosterone, dexamethasone, progesterone, thyroxine, and clomiphene citrate increased testicular 11beta-HSD oxidative activity, but decreased hepatic enzyme activity except for deoxycorticosterone (unchanged). Corticosterone and testosterone decreased 11beta-HSD oxidative activity in testis but not that of liver (which was unchanged). Estradiol, GCA and adrenalectomy lowered oxidative activity of 11beta-HSD in testis and liver, but the degrees of reduction were different. The in vivo effects of glucocorticoids too were different, even in the same organ. Dexamethasone, a pure glucocorticoid, has greater affinity for glucocorticoid receptors (GR) than corticosterone. The direct effects of dexamethasone via GR in increasing testicular 11beta-HSD oxidative activity may override its indirect effects. Possibly, the reverse occurs with corticosterone treatment, as it has both glucocorticoid and mineralocorticoid effects. Because both organs have Type I isoenzyme, the difference in 11beta-HSD oxidative activities of these two organs could be attributable to the presence of an additional isozyme in testis or differences in tissue-specific regulatory mechanisms.  相似文献   

17.
18.
A binding protein which exhibits high affinity to [3H]glycyrrhetinic-acid in the rat liver microsomal fraction was solubilized with 0.2% Triton DF-18 and then purified to homogeneity. The equilibrium dissociation constant of the [3H]glycyrrhetinic-acid binding reaction and the maximal concentration for the binding of the purified protein, as determined by Scatchard plot analysis, were 27.6 nM and 7.79 nmol/mg protein, respectively. The molecular mass of the subunit (34 kDa) and 30 amino acids of N-terminal sequence of the purified protein were entirely the same as those of the reported 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD). In each purification step, the recovery and purification (fold) of the glycyrrhetinic-acid binding activity corresponded to the values of 11 beta-HSD activity. These results show that the purified [3H]glycyrrhetinic-acid binding protein is 11 beta-HSD. From the molecular mass of 11 beta-HSD (135 kDa) and the maximal concentration of the binding site, it was calculated that one glycyrrhetinic acid molecule binds to one 11 beta-HSD molecule. The inhibitory effects of various glycyrrhetinic-acid derivatives on [3H]glycyrrhetinic acid binding and 11 beta-HSD activity indicate that the C30-carboxyl and C11-carbonyl groups of glycyrrhetinic acid are the principal structures for the 11 beta-HSD inhibition.  相似文献   

19.
20.
The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes catalyze the interconversion of active glucocorticoids (GC) with their inert metabolites, thereby regulating the functional activity of GC. While 11beta-HSD type 1 (11beta-HSD1) activates GC from their 11-keto metabolites, 11beta-HSD type 2 (11beta-HSD2) inactivates GC. Here we report that both of these enzymes are expressed in human aortic smooth muscle cells (SMC), and that 11beta-HSD1 is more abundant and is differentially regulated relative to 11beta-HSD2. Stimulation of SMC with IL-1beta or TNFalpha led to a time- and dose-dependent increase of mRNA levels for 11beta-HSD1, while 11beta-HSD2 mRNA levels decreased. Parallel enzyme activity studies showed increased conversion of 3H-cortisone to 3H-cortisol but not 3H-cortisol to 3H-cortisone, demonstrating 11beta-HSD1 in SMC acts primarily as a reductase. A similar increase of 11beta-HSD1 mRNA expression was also found in human bronchial SMC upon stimulation, indicating the regulatory effect is not limited to vascular smooth muscle. Additional parallel studies revealed a similar pattern of induction for 11beta-HSD1 and monocyte chemoattractant protein-1, a well-defined proinflammatory molecule. These data suggest 11beta-HSD1 may play an important role in regulating inflammatory responses in the artery wall and lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号