首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Experimental mycology》1994,18(2):180-192
MacKichan, J. K., Tuininga, A. R., and Kerwin, J. L. 1994. Preliminary characterization of phospholipase A2 in Lagenidium giganteum. Experimental Mycology 18, 180-192. Phospholipase A2 (PLA2) hydrolyses the fatty acyl ester bond at the sn-2 position in glycerophospholipids. To better understand its regulatory roles, factors affecting PLA2 activity in Lagenidium giganteum were investigated: divalent ions; chelators: inhibitors; pH; and substrate concentration. PLA2 activity of L. giganteum whole cell homogenates was determined using 1-stearoyl-2-[1-14C]arachidonoyl phosphatidylcholine as substrate. The divalent cations Ca2+, Mg2+, and Mn2+ all enhanced PLA2 activity, while Co2+, Fe2+, and Zn2+ were either slightly inhibitory or without effect. High concentrations of EGTA enhanced activity, low concentrations of the chelators were slightly inhibitory, while high concentrations of EDTA had little effect. EGTA, which has a higher affinity for Ca2+ and Mn2+ than Mg2+, reduced hydrolysis less than a comparable concentration of EDTA. Two pH optima were found, at both acid (ca. 5.5) and alkaline (ca. 11.5) levels. Four classical inhibitors, nordihydroguaiaretic acid, ellagic acid, gossypol, and 4-bromophenacylbromide, reduced PLA2 activity by about 80% at 5 mM concentration, 50% with 1 mM inhibitor, and had no effect at 100 μM. The relatively high levels of these compounds needed to inhibit PLA2 hydrolysis may have been due to the presence of a cocktail of enzymes, some of which were not susceptible to inhibition. All inhibitors at 1 mM concentration in live cell cultures effectively shut down oosporogenesis, without adverse effects to the mycelia. PLA2 activity was highest in the late oospore stage of the life cycle, although the enzymes were probably not metabolically active in these stationary cultures. Cultures grown on cholesterol-supplemented defined media had significantly higher levels of PLA2 activity relative to cultures grown on sterol-free media. The enzyme was found to be associated primarily with microsomal membranes, but there was significant activity in cytosolic fractions. Separation of cell homogenates by column chromatography revealed that there were at least nine enzymes capable of cleaving fatty acids in the sn -2 position of phospholipids.  相似文献   

2.
Chronic lithium administration decreases the turnover of arachidonic acid (AA) in several brain phospholipids. This suggests that lithium may attenuate phospholipase A2 (PLA2) activity in brain. We now report effects of chronic lithium treatment on PLA2 activity in postnuclear supernatant from rat brain: Enzyme activity was determined by two assay methods, radiometric and fluorometric, and measured the release of the fatty acid on the second acyl position (sn2) from choline and ethanolamine phospholipids. PLA2 activity in brain postnuclear supernatant from rats chronically treated with lithium in the diet was significantly decreased (20–50%) when compared with controls. In vehicle or lithium-treated rats, PLA2 activity was not significantly augmented or attenuated by the addition of calcium chelators, divalent cations or LiCl supplementation (1.0 mM) to postnuclear supernatant. These results suggest that a major therapeutic effect of lithium is to attenuate brain PLA2 activity involved in signal transduction.  相似文献   

3.
A membrane-bound aminopeptidase which cleaves the tyrosin-glycine bond of enkephalin was purified about 1600-fold from monkey brain. This aminopeptidase hydrolyzed Leu-enkephalin with a Km value of 35 μM and also hydrolyzed basic, neutral and aromatic amino acid β-naphthylamides. An apparently homogeneous enzyme consisted of a single polypeptide chain with a molecular weight of approx. 100 000. The optimum pH was in the neutral region. From the analysis of the reaction products, only aminopeptidase activity was detected. The enzyme was inactivated by metal chelators, but the activity could be restored by the addition of divalent cations, such as Co2+, Mg2+ and Zn2+. Puromycin, bestatin and amastatin, which are aminopeptidase inhibitors derived from microorganism, showed strong competitive inhibition of the enzyme, the most potent being amastatin, with a Ki value of 0.02 μM.  相似文献   

4.
Kinetic characterization of spinach leaf sucrose-phosphate synthase   总被引:1,自引:14,他引:1       下载免费PDF全文
Amir J  Preiss J 《Plant physiology》1982,69(5):1027-1030
The spinach (Spinacia oleracea) leaf sucrose-phosphate synthase was partially purified via DEAE-cellulose chromatography, and its kinetic properties were studied. Fructose-6-phosphate saturation curves were sigmoidal, while UDPglucose saturation curves were hyperbolic. At subsaturating concentrations of fructose-6-phosphate, 1,5 anhydroglucitol-6-phosphate had a stimulatory effect on enzyme activity, suggesting multiple and interacting fructose-6-phosphate sites on sucrose-phosphate synthase. The concentrations required for 50% of maximal activity were 3.0 millimolar and 1.3 millimolar, respectively, for fructose-6-phosphate and UDPglucose. The enzyme was not stimulated by divalent cations. Inorganic phosphate proved to be a potent inhibitor, particularly at low concentrations of substrate. Phosphate inhibition was competitive with UDPglucose, and its Ki was determined to be 1.75 millimolar. Sucrose phosphate, the product of the reaction, was also shown to be a competitive inhibitor towards UDPglucose concentration and had Ki of 0.4 millimolar. The kinetic results suggest that spinach leaf sucrose-phospahte synthase is a regulatory enzyme and that its activity is modulated by the concentrations of phosphate, fructose-6-phosphate, and UDPglucose occurring in the cytoplasm of the leaf cell.  相似文献   

5.
Summary In a previous report it was shown that EDTA inhibition of liver glycogen synthase phosphatase activity in preparations from normal, fed rats could be increased upon glucagon or cAMP treatment. This occurred without a change in the half-maximum inhibitory concentration of EDTA. Glucose administration to animals resulted in decreased EDTA inhibition. The inhibitory action of EDTA has been further characterized by comparing its action with that of other chelators (CDTA and EGTA) and examining the effects of various divalent cations on chelator inhibition. Both CDTA and EDTA which differ structurally were inhibitory at 5 mm concentrations whereas EGTA which is structurally similar to EDTA was not inhibitory at concentrations up to 10 mm. The lack of inhibition by EGTA could be explained by its weak affinity for Mg++ in the preparation. A comparison of CDTA and EDTA revealed that CDTA was a more potent inhibitor than EDTA (I0.5, 0.15 mm vs 0.3 mm). Glucagon and glucose treatment of rats resulted in changes in CDTA inhibition which closely paralleled those of EDTA. A large group of divalent cations were tested but only Mg++, Ca++, and Mn++ both prevented and reversed CDTA or EDTA inhibition. Fifty percent reversal using either chelator occurred at calculated free-metal ion concentrations of approximately 2 µm, 0.08 µm and 0.0004 µm, respectively. Thus, it is clear that EDTA inhibition is due to its chelation effect and is not due to a nonspecific anionic effect.  相似文献   

6.
Purification and Properties of 2-Carboxy-d-Arabinitol 1-Phosphatase   总被引:1,自引:1,他引:0  
Carboxyarabinitol 1-phosphatase (2-carboxy-d-arabinitol 1-phosphate phosphohydrolase), a chloroplast enzyme that metabolizes the naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase, was isolated from tobacco (Nicotiana tabacum) leaves. The enzyme was purified more than 3500-fold using a protocol that included ammonium sulfate fractionation and gel filtration, ion-exchange, and hydrophobic interaction chromatography. Analysis of the final preparation by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of a single polypeptide with a molecular mass of 53 kilodaltons. The enzyme exhibited an apparent Km (carboxyarabinitol 1-phosphate) of 33 micromolar and a pH optimum of 7.5. Enzyme activity did not require divalent cations and was unaffected by the metal chelators EDTA and cysteine. Carboxyarabinitol 1-phosphatase activity was inhibited by zinc, copper and molybdate and stimulated by sulfate. Chloroplast metabolites that affected activity included inorganic phosphate and ATP, which were inhibitory, and ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate and NADPH which stimulated activity 2.5-fold. Activation of carboxyarabinitol 1-phosphatase activity by these positive effectors, together with the previously reported requirement for dithiothreitol, explain the light/dark modulation of carboxyarabinitol 1-phosphatase activity in vivo.  相似文献   

7.
The divalent cations Mg2+, Mn2+, Zn2+, Ca2+, and Ni2+ were found to protect against proteolysis a form of GroEL (ox-GroEL) prepared by exposing GroEL for 16 h to 6 mM hydrogen peroxide (H2O2). K+ and other monovalent cations did not have any effect. Divalent cations also induced a conformational change of ox-GroEL that led to the decrease of its large exposed hydrophobic surfaces (exposed with H2O2). Ox-GroEL incubated with a divalent cation behaved like N-GroEL in that it could transiently interact with H2O2-inactivated rhodanese (ox-rhodanese), whereas ox-GroEL alone could strongly interact with ox-rhodanese. Although, ox-GroEL incubated with a divalent cation could not recover the ATPase activity (66%) lost with H2O2, it could facilitate the reactivation of ox-rhodanese (>86% of active rhodanese recovered), without requiring ATP or the co-chaperonin, GroES. This is the first report to demonstrate a role for the divalent cations on the structure and function of ox-GroEL.  相似文献   

8.
Sun J  Loboda T  Sung SJ  Black CC 《Plant physiology》1992,98(3):1163-1169
Here it is reported that sucrose synthase can be readily measured in growing wild tomato fruits (Lycopersicon chmielewskii) when suitable methods are adopted during fruit extraction. The enzyme also was present in fruit pericarp tissues, in seeds, and in flowers. To check for novel characteristics, the wild tomato fruit sucrose synthase was purified, by (NH4)2SO4 fraction and chromatography with DE-32, Sephadex G-200, and PBA-60, to one major band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The following characteristics were obtained: native protein relative molecular weight 380,000; subunit relative molecular weight 89,000; Km values with: sucrose 53 millimolar, UDP 18.9 micromolar, UDP-glucose 88 micromolar, fructose 8.4 millimolar; pH optima between 6.2 to 7.3 for sucrose breakdown and 7 to 9 for synthesis; and temperature optima near 50°C. The enzyme exhibited a high affinity and a preference for uridylates. The enzyme showed more sensitivity to divalent cations in the synthesis of sucrose than in its breakdown. Sink strength in tomato fruits also was investigated in regard to sucrose breakdown enzyme activities versus fruit weight gain. Sucrose synthase activity was consistently related to increases in fruit weight (sink strength) in both wild and commercial tomatoes. Acid and neutral invertases were not, because the published invertase activity values were too variable for quantitative analyses regarding the roles of invertases in tomato fruit development. In rapidly growing fruits of both wild and commercially developed tomato plants, the activity of sucrose synthase per growing fruit, i.e. sucrose synthase peak activity X fruit size, was linearly related to final fruit size; and the activity exceeded fruit growth and carbon import rates by at least 10-fold. In mature, nongrowing fruits, sucrose synthase activities approached nil values. Therefore, sucrose synthase can serve as an indicator of sink strength in growing tomato fruits.  相似文献   

9.
Abstract Stacking of thylakoid membranes in vitro was assessed using electron microscopy. Grana stacks of spinach thylakoids formed when 5 mol m?3 MgCl2 was present, but no stacking of thylakoids from the mangrove Avicennia marina occurred in the presence of 10 mol m?3? MgCl2. Isolation of mangrove thylakoids with a high osmotic strength medium did not induce grana formation if the medium consisted only of sorbitol or glycinebetaine. Addition of cations to the high osmotic strength medium did induce some loose-grana formation, with divalent cations being more effective than monovalent cations. Glycinebetaine was a better osmoticum than sorbitol for grana formation provided divalent cations had been added. Oxygen evolution activity of the preparations was influenced by the amount of membrane stacking, with the preparations with the greatest amount of stacked membrane having the highest activity. Isolation with sorbitol or glycinebetaine based media did not alter this pattern, nor did assay in sorbitol or glycinebetaine. Mangrove thylakoids have a requirement for both a high osmotic strength and divalent cations for grana formation in vitro which may be related to the low water potential of the plant environment in vivo.  相似文献   

10.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

11.
Pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Mycobacterium smegmatis has been purified to homogeneity through a seven-step procedure with a yield of 16% and specific activity of 220 units/mg protein. The purified enzyme had a molecular weight of 230,700 and was composed of four subunits with identical molecular weights of 57,540. Analysis of amino acid composition revealed a low content of aromatic amino acids. The enzyme exhibited sigmoidal kinetics of varying concentrations of phosphoenolpyruvate, the degree of cooperativity and S0.5v value for phosphoenolpyruvate being strongly dependent on the pH of the reaction mixture. Among the nucleoside diphosphates acting as substrate for pyruvate kinase, ADP was the best phosphate acceptor, as judged by its lowest Km value. The enzyme showed an absolute requirement for divalent cations (either Mg2+ or Mn2+), but monovalent cations were not necessary for activity. Other divalent cations inhibited the Mg2+-activated enzyme to varying degrees (Ni2+ > Zn2+ > Cu2+ > Ca2+ > Ba2+). The differences in the kinetic responses of the enzyme to Mg2+ and Mn2+ are discussed.  相似文献   

12.
A latent RNAase activity stimulated by nucleoside triphosphates has been isolated from a yeast chromatin extract, by filtration on Sepharose 6B and hydroxyapatite chromatography. The RNAase was separated from a thermolabile proteic inhibitor on phosphocellulose. When separated from the inhibitor, the RNAase hydrolyses RNA to 5′-mononucleotides. Its activity is retained in the presence of EDTA, and 50% inhibited by 1 mM ATP or CTP. The RNAase is inhibited by the thermolabile component only in the presence of divalent cations. The activity is recovered upon addition of 0.01 mM ATP to the mixture. The Km for ATP is 10 μM. ATP can be replaced by other ribo- or deoxyribonucleoside triphosphates with varying efficiency but not by ADP, AMP or cAMP. These results suggest multiple interactions between the RNAase, a regulatory component, divalent cations and nucleoside triphosphates.  相似文献   

13.
To investigate modulation of the activation of cGMP-gated ion channels in cone photoreceptors, we measured currents in membrane patches detached from the outer segments of single cones isolated from striped bass retina. The sensitivity of these channels to activation by cGMP depends on the history of exposure to divalent cations of the membrane''s cytoplasmic surface. In patches maintained in 20 μM Ca++ and 100 μM Mg++ after excision, the current amplitude dependence on cGMP is well described by a Hill equation with average values of K 1/2, the concentration necessary to activate half the maximal current, of 86 μM and a cooperativity index, n, of 2.57. Exposing the patch to a solution free of divalent cations irreversibly increases the cGMP sensitivity; the average value of K 1/2 shifts to 58.8 μM and n shifts to 1.8. Changes in cGMP sensitivity do not affect other functional parameters of the ion channels, such as the interaction and permeation of mono- and divalent cations. Modulation of cGMP activation depends on the action of an endogenous factor that progressively dissociates from the channel as Ca++ concentration is lowered below 1 μM. The activity of the endogenous modulator is not well mimicked by exogenously added calmodulin, although this protein competes with the endogenous modulator for a common binding site. Thus, the modulation of cGMP affinity in cones depends on the activity of an unidentified molecule that may not be calmodulin.  相似文献   

14.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) of the plasma membrane by phospholipase C (PLC) generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1). Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.  相似文献   

15.
Electron donation to photosystem I   总被引:7,自引:4,他引:3       下载免费PDF全文
Electron donation to photosystem I was studied in highly resolved particles from spinach. Divalent cations increased the efficiency of electron donation from spinach plastocyanin to P700+ through a decrease in the apparent Km for plastocyanin. Cytochrome f was not an efficient electron donor for P700+ in the presence or absence of divalent cations. Cytochrome f photooxidation could be observed in the presence of both plastocyanin and divalent cations.  相似文献   

16.
Soluble preparations from mycelium of the dimorphic fungus Mucor rouxii contained detectable amounts of phosphoprotein phosphatase activity. This cytosolic phosphatase activity exhibited a molecular weight below 80,000 and could be resolved into two different forms (enzymes I and II) by chromatography on DEAE-cellulose followed by gel filtration on Sephacryl S-300. Enzyme I (Mr 64,000) was mainly a histone phosphatase activity, absolutely dependent on divalent cations, with a K0.5 for MnCl2 of 2 mm. Enzyme II (Mr 40,000) was active with histone and phosphorylase. Its activity was independent or slightly inhibited by Mn2+. This enzyme was strongly inhibited by 50 mm NaF or 1 mm ATP. When partially purified enzymes I and II were separately treated with ethanol, the catalytic properties of enzyme II were apparently not affected while those of enzyme I were drastically changed. The activity with histone, which was originally dependent on Mn2+, became independent or slightly inhibited by the cation. The treatment was accompanied by a notable increase in phosphorylase phosphatase activity which was strongly inhibited by Mn2+. Treated enzyme I eluted from DEAE-cellulose and Sephacryl S-300 columns at a position similar to that of enzyme II.  相似文献   

17.
Gut chitin synthase was characterized and the sterols and ecdysteroids in the sugarcane rootstalk borer weevil, Diaprepes abbreviatus, were identified. An in vitro cell-free chitin synthase assay was developed using larval gut tissues from D. abbreviatus. Subcellular fractionation experiments showed that the majority of chitin synthase activity was located in 10,000g pellets. The gut chitin synthase requires Mg2+ to be fully active: 7–8-fold increases in activity were obtained with 10 mM Mg2+ present in reaction mixture. Calcium also stimulated activity (4–5-fold with 10 mM Ca2+), while Cu+2 completely inhibited at 1 mM. Other monovalent and divalent cations had little or no effect on activity. The pH and temperature optima were 7 and 25°C, respectively. Gut chitin synthesis was activated ca. 50% by trypsin treatments. GlcNAc stimulated chitin synthase activity, but Glc, GlcN and glycerin did not. Polyoxin D, UDP, and ADP inhibited the chitin synthase reaction with I50's of 75 μM, 2.3 mM, and 3.6 mM, respectively. Nikkomycin Z was a potent inhibitor of chitin synthase (91% inhibition at 10 μM). Tunicamycin and diflubenzuron had no effect on the enzyme. The apparent Km and Vmax for the gut chitin synthase were, respectively, 122.5 ± 7.4 μM and 426 ± 19.7 pmol/h/mg protein utilizing UDP-GlcNAc as the substrate. Sterol analyses indicated that cholesterol was the major dietary and larval sterol. HPLC/RIA data indicated that 20-hydroxyecdysone was the major molting hormone.  相似文献   

18.
The effect of divalent cations on the primary photoconversion kinetics of chloroplast Photosystems (PS) I and II was investigated by absorbance difference spectrophotometry in the ultraviolet (ΔA320) and red (ΔA700) regions and by fluorescence at room temperature. Three main chlorophyll (Chl) a fluorescence emission components were identified. Addition of 5 mM MgCl2 to unstacked chloroplasts caused a 5–7-fold increase in Fvα, the variable fluorescence yield controlled by the α-centers. The fluorescence yield Fvβ controlled by the β-centers and the nonvariable fluorescence yield F0 were only slightly changed by the treatment. The absolute number of α- and β-centers remained unchanged and independent of divalent cations. The rate constants Kα, Kβ and KP-700 determined from the photoconversion kinetics of Qα, Qβ and P-700 were also unchanged by divalent cations, suggesting a constancy of the respective absorption cross-sections. Evidence is presented that the Mg2+ effect on Chl a fluorescence is not due simply to unstacking. Conclusion: (1) In the absence of divalent cations from the chloroplast suspending medium, the variable fluorescence yield is not complementary to the rate of PS II photochemistry. (2) A spillover of excitation from PS II to PS I in the absence of Mg2+ cannot account for the 7-fold lowering of the variable fluorescence yield Fvα at room temperature. The results are discussed in view of a model of excitation transfer and fluorescence emission in the pigment bed of PS IIα and PS IIβ.  相似文献   

19.
Binding of Dissolved Strontium by Micrococcus luteus   总被引:1,自引:1,他引:0       下载免费PDF全文
Resting cells of Micrococcus luteus have been shown to remove strontium (Sr) from dilute aqueous solutions of SrCl2 at pH 7. Loadings of 25 mg of Sr per g of cell dry weight were achieved by cells exposed to a solution containing 50 ppm (mg/liter) of Sr. Sr binding occurred in the absence of nutrients and did not require metabolic activity. Initial binding was quite rapid (<0.5 h), although a slow, spontaneous release of Sr was observed over time. Sr binding was inhibited in the presence of polyvalent cations but not monovalent cations. Ca and Sr were bound preferentially over all other cations tested. Sr-binding activity was localized on the cell envelope and was sensitive to various chemical and physical pretreatments. Bound Sr was displaced by divalent ions or by H+. Other monovalent ions were less effective. Bound Sr was also removed by various chelating agents. It was concluded that Sr binding by M. luteus is a reversible equilibrium process. Both ion exchange mediated by acidic cell surface components and intracellular uptake may be involved in this activity.  相似文献   

20.
The effects of various salts on the proteolytic activity of extracts from Schistosoma mansoni cercariae were tested. Using an Azocoll substrate, stimulation (2 to 2.5-fold) of activity by the monovalent cations Na+ and K+ was demonstrated, with maximum stimulation at 20–40 mM concentrations. The divalent cations Mg2+ and Ca2+ stimulated proteolytic activity at low concentrations (between 0 and 10 mM) but inhibited activity at higher concentrations. The divalent cations Zn2+, Cu2+, Fe2+, and Co2+ were inhibitory even at very low concentrations. The results presented here are discussed in relation to previously described ion effects on cercarial infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号