首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

3.
4.
The acid phosphatase gene from lupin was expressed in transgenic rice plants under the control of the maize ubiquitin promoter or rice chlorophyll a/b binding protein (Cab) promoter. Transgenic rice leaves exhibited up to an 18-fold increase in phytate-hydrolyzing activity. Based on the phytate-hydrolyzing activity at pH 5.5, more than 85% this activity was retained after heat-treatment at 80 degrees C for 15 min, and the heterologous enzyme in leaf sections and leaf extracts was relatively stable during storage. A distinct increase in released phosphate was observed when the heterologous enzyme was mixed with the feed extract. These results suggest that the heterologous enzyme in rice plants may maintain its desired characteristics as a phytate-hydrolyzing enzyme when added to animal feed.  相似文献   

5.
Phosphate uptake by yeast at pH 7.2 is mediated by two mechanisms, one of which has a Km of 30 micronM and is independent of sodium, and a sodium-dependent mechanism with a Km of 0.6 micronM, both Km values with respect to monovalent phosphate. The sodium-dependent mechanism has two sites with affinity for Na+, with affinity constants of 0.04 and 29 mM. Also lithium enhances phosphate uptake; the affinity constants for lithium are 0.3 and 36 mM. Other alkali ions do not stimulate phosphate uptake at pH 7.2. Ribidium has no effect on the stimulation of phosphate uptake by sodium. Phosphate and arsenate enhance sodium uptake at pH 7.2. The Km of this stimulation with regard to monovalent orthophosphate is about equal to that of the sodium-dependent phosphate uptake. The properties of the cation binding sites of the phosphate uptake mechanism and those of the phosphate-dependent cation transport mechanism have been compared. The existence of a separate sodium-phosphate cotransport system is proposed.  相似文献   

6.
Apical membrane vesicles were prepared from confluent monolayers of LLC-PK1 cells grown upon microcarrier beads. The final membrane preparation, obtained by a modified divalent cation precipitation technique, was enriched in alkaline phosphatase, leucine aminopeptidase and trehalase (8-fold compared to the initial homogenate). Analysis of phosphate uptake into the vesicles identified a specific sodium-dependent pathway. Lithium and other cations were unable to replace sodium. At 100 mmol/l sodium and pH 7.4, an apparent Km for phosphate of 99 +/- 19 mumol/l and an apparent Ki for arsenate of 1.9 mmol/l were found. Analysis of the sodium activation of phosphate uptake gave an apparent Km for sodium of 32 +/- 12 mmol/l and suggested the involvement of two sodium ions in the transport mechanism. Sodium modified the apparent Km of the transport system for phosphate. The rate of sodium-dependent phosphate uptake was higher at pH 6.4 than at pH 7.4. At both pH values, an inside negative membrane potential (potassium gradient plus valinomycin) had no stimulatory effect on the rate of the sodium-dependent component of phosphate uptake. It is concluded that the apical membrane of LLC-PK1 cells contains a sodium-phosphate cotransport system with a stoichiometry of 2 sodium ions: 1 phosphate anion.  相似文献   

7.
8.
VP1为感染并裂解霍乱弧菌的噬菌体,全基因组为环状双链DNA。通过测定该基因组序列,预测出15个可能的启动子区,利用报告基因质粒转化及全噬菌体共感染的策略分析了这些推测启动子在霍乱弧菌中的活性,将预测的启动子区分别克隆到启动子探测lacZ融合质粒载体pRS1274,在转化于大肠埃希氏菌受体菌株JM109中时,所有克隆子均呈现兰斑。同时将质粒电击到缺失了lacZ基因的霍乱弧菌菌株7743△Z,然后用噬菌体VP1感染转化菌株。在转化成功的13个含预测启动子片段的重组质粒中,通过检测β_半乳糖苷酶活性表达随感染后时间的变化,提示P17为早期启动子,P2、P3、P9等为中期启动子,P18为晚期启动子。  相似文献   

9.
Inorganic phosphate (P(i)) plays a key role in diverse physiological functions. Recent studies have indicated that P(i) affects Akt signaling through the sodium-dependent phosphate cotransporter. Akt signaling, in turn, plays an important role in liver development; however, the effects of high dietary P(i) on the liver have not been investigated. Here, we examined the effects of high dietary phosphate on the liver in developing mice. We found that high dietary P(i) increased liver mass through enhancing Akt-related cap-dependent protein translation, cell cycle progression, and angiogenesis. Thus careful regulation of P(i) consumption may be important in maintaining normal development of the liver.  相似文献   

10.
Regulation of phosphate uptake was studied in a HeLa cell line after transfection with DNA encoding the human 5-HT1A receptor. In these cells, 5-HT stimulates sodium-dependent phosphate uptake via protein kinase C activation. Endogenous histamine H1 receptors (739 +/- 20 fmol/mg protein) were identified with [3H]pyrilamine. Histamine (i) stimulated phosphoinositide hydrolysis (EC50 = 8.6 +/- 4.1 microM), (ii) activated protein kinase C (2.4-fold increase in activity), and (iii) increased phosphate uptake (EC50 = 3.2 +/- 1.8 microM) by increasing maximal transport (Vmax(basal) = 6.2 +/- 0.3 versus Vmax(histamine) = 9.1 +/- 0.4) without changing the affinity of the transport process for phosphate. Prolonged treatment with 16 microM phorbol 12-myristate 13-acetate completely blocked protein kinase C activation and markedly attenuated the stimulation of phosphate uptake induced by histamine, establishing that 5-HT and histamine stimulate phosphate uptake through the common pathway of protein kinase C activation. The linkages of the histamine H1 and 5-HT1A receptors to G protein pools were assessed in two ways. (i) The stimulation of phosphoinositide hydrolysis, protein kinase C activity, and phosphate uptake associated with histamine were insensitive to pertussis toxin, whereas those associated with 5-HT were very sensitive to pertussis toxin. (ii) The stimulation of phosphoinositide hydrolysis, protein kinase C activity, and phosphate uptake induced by histamine and 5-HT were additive. These findings suggest that distinct receptor types can stimulate phosphoinositide hydrolysis, protein kinase C, and phosphate uptake in an additive fashion through distinct pools of G proteins in a single cell type.  相似文献   

11.
In Bacillus pasteurii glutamine is being taken up efficiently by a sodium-dependent uptake system and subsequently hydrolysed to ammonium and glutamate. Concerning the latter process, a catabolic L-glutamine amidohydrolase (glutaminase) was isolated from the cytoplasm of this alkaliphilic bacterium and purified to homogeneity using liquid chromatography. Biochemical and physical parameters of the pure enzyme were examined in detail. Interestingly, analysis of the glutaminase revealed a marked increase in catalytic activity in the presence of phosphate, a property yet restricted to animal glutaminases. This is the first report on the presence of a phosphate-activated glutaminase in bacteria.  相似文献   

12.
During calcification of bone, large amounts of phosphate (P(i)) must be transported from the circulation to the osteoid. Likely candidates for osteoblast P(i) transport are the type II sodium-phosphate cotransporters NaPi-IIa and NaPi-IIb that facilitate transcellular P(i) flux in kidney and intestine, respectively. We have therefore determined the 'cotransporters' expression in osteoblast-like cells. We have also studied the 'cotransporters' regulation by P(i) and during mineralization in vitro. Phosphate uptake and cotransporter protein expression was investigated at early, late and mineralizing culture stages of mouse (MC3T3-E1) and rat (UMR-106) osteoblast-like cells. Both NaPi-IIa and NaPi-IIb were expressed by both osteoblast-like cell lines. NaPi-IIa was upregulated in both cell lines one week after confluency. After 7 days in 3mM P(i) NaPi-IIa was strongly upregulated in both cell lines. NaPi-IIb expression was unaffected by both culture stage and P(i) supplementation. The expression of both cotransporters was unaffected by P(i) deprivation. In vitro mineralization at 1.5mM P(i) was preceded by a three-fold increase in osteoblast sodium-dependent P(i) uptake and a corresponding upregulation of both NaPi-IIa and NaPi-IIb. Their expression thus seem regulated by phosphate in a manner consistent with their playing a role in transcellular P(i) flux during mineralization.  相似文献   

13.
14.
15.
M C Chang  S Y Chang  S L Chen  S M Chuang 《Gene》1992,122(1):175-180
The gene encoding an extracellular DNase from Aeromonas hydrophila CHC-1 has been cloned and sequenced. Following expression of the dns in Escherichia coli, it was revealed that some of the cloned enzyme was present in the cell-free extracellular supernatant fluid, and there was no cell lysis and concurrent release of cytoplasmic or periplasmic proteins. Therefore, results suggest that E. coli cells were capable of secreting the DNase extracellularly, albeit very inefficiently. The dns is transcribed from its own promoter in E. coli, and expressed as a 25-kDa product, as determined by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis of the culture supernatant preparations followed by a DNA-hydrolysis assay. Nucleotide sequence analysis predicted a single open reading frame of 690 bp encoding a 230-amino acid (aa) polypeptide, with a potential 20-aa signal peptide located at the N terminus of the predicted protein. The deduced aa sequence of the entire protein is highly homologous with that of the DNase of Vibrio cholerae.  相似文献   

16.
The nqr operon from Vibrio cholerae, encoding the entire six-subunit, membrane-associated, Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR), was cloned under the regulation of the P(BAD) promoter. The enzyme was successfully expressed in V. cholerae. To facilitate molecular genetics studies of this sodium-pumping enzyme, a host strain of V. cholerae was constructed in which the genomic copy of the nqr operon was deleted. By using a vector containing a six-histidine tag on the carboxy terminus of the NqrF subunit, the last subunit in the operon, the recombinant enzyme was readily purified by affinity chromatography in a highly active form from detergent-solubilized membranes of V. cholerae. The recombinant enzyme has a high specific activity in the presence of sodium. NADH consumption was assessed at a turnover number of 720 electrons per second. When purified using dodecyl maltoside (DM), the isolated enzyme contains approximately one bound ubiquinone, whereas if the detergent LDAO is used instead, the quinone content of the isolated enzyme is negligible. Furthermore, the recombinant enzyme, purified with DM, has a relatively low rate of reaction with O(2) (10-20 s(-1)). In steady state turnover, the isolated, recombinant enzyme exhibits up to 5-fold stimulation by sodium and functions as a primary sodium pump, as reported previously for Na(+)()-NQR from other bacterial sources. When reconstituted into liposomes, the recombinant Na(+)-NQR generates a sodium gradient and a Delta Psi across the membrane. SDS-PAGE resolves all six subunits, two of which, NqrB and NqrC, contain covalently bound flavin. A redox titration of the enzyme, monitored by UV-visible spectroscopy, reveals three n = 2 redox centers and one n = 1 redox center, for which the presence of three flavins and a 2Fe-2S center can account. The V. cholerae Na(+)-NQR is well-suited for structural studies and for the use of molecular genetics techniques in addressing the mechanism by which NADH oxidation is coupled to the pumping of Na(+) across the membrane.  相似文献   

17.
The aromatase gene encodes the key enzyme for estrogen formation. Aromatase enzyme inhibitors eliminate total body estrogen production and are highly effective therapeutics for postmenopausal breast cancer. A distal promoter (I.4) regulates low levels of aromatase expression in tumor-free breast adipose tissue. Two proximal promoters (I.3/II) strikingly induce in vivo aromatase expression in breast fibroblasts surrounding malignant cells. Treatment of breast fibroblasts with medium conditioned with malignant breast epithelial cells (MCM) or a surrogate hormonal mixture (dibutyryl (Bt2)cAMP plus phorbol diacetate (PDA)) induces promoters I.3/II. The mechanism of promoter-selective expression, however, is not clear. Here we reported that sodium butyrate profoundly decreased MCM- or Bt2cAMP + PDA-induced promoter I.3/II-specific aromatase mRNA. MCM, Bt2cAMP + PDA, or sodium butyrate regulated aromatase mRNA or activity only via promoters I.3/II but not promoters I.1 or I.4 in breast, ovarian, placental, and hepatic cells. Mechanistically, recruitment of phosphorylated ATF-2 by a CRE (-211/-199, promoter I.3/II) conferred inductions by MCM or Bt2cAMP + PDA. Chromatin immunoprecipitation-PCR and immunoprecipitation-immunoblotting assays indicated that MCM or Bt2cAMP + PDA stabilized a complex composed of phosphorylated ATF-2, C/EBPbeta, and cAMP-response element-binding protein (CREB)-binding protein in the common regulatory region of promoters I.3/II. Overall, histone acetylation patterns of promoters I.3/II did not correlate with sodium butyrate-dependent silencing of promoters I.3/II. Sodium butyrate, however, consistently disrupted the activating complex composed of phosphorylated ATF-2, C/EBPbeta, and CREB-binding protein. This was mediated, in part, by decreased ATF-2 phosphorylation. Together, these findings represent a novel mechanism of sodium butyrate action and provide evidence that aromatase activity can be ablated in a signaling pathway- and cell-specific fashion.  相似文献   

18.
The temperature dependence of sodium-dependent and sodium-independent d-glucose and phosphate uptake by renal brush border membrane vesicles has been studied under tracer exchange conditions. For sodium-dependent d-glucose and phosphate uptake, discontinuities in the Arrhenius plot were observed. The apparent activation energy for both processes increased at least 4-fold with decreasing temperature. The most striking change in the slope of the Arrhenius plot occurred between 12 and 15°C. The sodium-independent uptake of d-glucose and phosphate showed a linear Arrhenius plot over the temperature range tested (35–5°C). The behavior of the transport processes was compared to the temperature dependence of typical brush border membrane enzymes. Alkaline phosphatase as intrinsic membrane protein showed a nonlinear Arrhenius plot with a transition temperature at 12.4°C. Aminopeptidase M, an extrinsic membrane protein exhibited a linear Arrhenius plot. These data indicate that the sodium-glucose and sodium-phosphate cotransport systems are intrinsic brush border membrane proteins, and that a change in membrane organization alters the activity of a variety of intrinsic membrane proteins simultaneously.  相似文献   

19.
Escherichia coli contains two major systems for transporting inorganic phosphate (P(i)). The low-affinity P(i) transporter (pitA) is expressed constitutively and is dependent on the proton motive force, while the high-affinity Pst system (pstSCAB) is induced at low external P(i) concentrations by the pho regulon and is an ABC transporter. We isolated a third putative P(i) transport gene, pitB, from E. coli K-12 and present evidence that pitB encodes a functional P(i) transporter that may be repressed at low P(i) levels by the pho regulon. While a pitB(+) cosmid clone allowed growth on medium containing 500 microM P(i), E. coli with wild-type genomic pitB (pitA Delta pstC345 double mutant) was unable to grow under these conditions, making it indistinguishable from a pitA pitB Delta pstC345 triple mutant. The mutation Delta pstC345 constitutively activates the pho regulon, which is normally induced by phosphate starvation. Removal of pho regulation by deleting the phoB-phoR operon allowed the pitB(+) pitA Delta pstC345 strain to utilize P(i), with P(i) uptake rates significantly higher than background levels. In addition, the apparent K(m) of PitB decreased with increased levels of protein expression, suggesting that there is also regulation of the PitB protein. Strain K-10 contains a nonfunctional pitA gene and lacks Pit activity when the Pst system is mutated. The pitA mutation was identified as a single base change, causing an aspartic acid to replace glycine 220. This mutation greatly decreased the amount of PitA protein present in cell membranes, indicating that the aspartic acid substitution disrupts protein structure.  相似文献   

20.
We report the novel cloning and preliminary characterization of a murine type III sodium-dependent phosphate cotransporter (Pit-2) gene promoter. Five promoter/luciferase reporter gene constructs, -1816/+61, -1620/+61, -1223/+61, -600/+61 and -225/+61, showed significant luciferase activity (6-14-fold over background) when transfected into human colon carcinoma (Caco-2) and opossum kidney (OKP) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号