首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
ICP0, a herpes simplex virus immediate-early gene product, is a highly phosphorylated nuclear protein that is a potent activator of virus and host genes. Using biochemical and genetic assays employing plasmids encoding mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we mutant forms of ICP0 and a recombinant adenovirus that expresses ICP0, we provide evidence that the protein multimerizes. Some mutant forms of ICP0 were transdominant and interfered with activation of a target reporter gene or with complementation of an ICP0-minus virus.  相似文献   

3.
F Yao  P A Schaffer 《Journal of virology》1994,68(12):8158-8168
The herpes simplex virus type 1 immediate-early protein ICP0 enhances expression of a spectrum of viral genes alone and synergistically with ICP4. To test whether ICP0 and ICP4 interact physically, we performed far-Western blotting analysis of proteins from mock-, wild-type-, and ICP4 mutant virus-infected cells with in vitro-synthesized [35S]Met-labeled ICP0 and ICP4 as probes. The ICP4 and ICP0 polypeptides synthesized in vitro exhibited molecular weights similar to those of their counterparts in herpes simplex virus type 1-infected cells, and the in vitro-synthesized ICP4 was able to bind to a probe containing the ICP4 consensus binding site. Far-Western blotting experiments demonstrated that ICP0 interacts directly and specifically with ICP4 and with itself. To further define the interaction between ICP0 and ICP4, we generated a set of glutathione S-transferase (GST)-ICP0 fusion proteins that contain GST and either ICP0 N-terminal amino acids 1 to 244 or 1 to 394 or C-terminal amino acids 395 to 616 or 395 to 775. Using GST-ICP0 fusion protein affinity chromatography and in vitro-synthesized [35S]Met-labeled ICP0 and ICP4, ICP4 was shown to interact preferentially with the fusion protein containing ICP0 C-terminal amino acids 395 to 775, whereas ICP0 interacted efficiently with both the N-terminal GST-ICP0 fusion proteins and the C-terminal GST-ICP0 fusion proteins containing amino acids 395 to 775. Fusion protein affinity chromatography also demonstrated that the C-terminal 235 amino acid residues of ICP4 are important for efficient interaction with ICP0. Collectively, these results reveal a direct and specific physical interaction between ICP0 and ICP4.  相似文献   

4.
5.
6.
ICP0 is a 110,000-molecular-weight immediate-early protein of herpes simplex virus type 1 (HSV-1) which is encoded by three exons. It has been shown to function as a promiscuous transactivator of a variety of different HSV-1 and non-HSV-1 promoters in transient expression assays. Analysis of mutations which truncated the carboxy-terminal end of this 775-amino-acid (aa) protein demonstrated that a polypeptide which contained only aa 1 to 553 still possessed significant transactivation potential. Additional carboxy-terminal truncations which sequentially removed aa 245 to 553 and thus the remainder of the third exon resulted in the eventual loss of transactivation capability in these mutants. However, further analysis of these truncated derivatives demonstrated that they behaved as dominant-negative mutants to the wild-type polypeptide. Moreover, one of the mutants was found to act as a promiscuous repressor, in that it could dramatically inhibit a variety of HSV-1 promoters, non-HSV-1 promoters, and heterologous transactivator proteins in transient expression assays, despite having lost almost the entire third exon. These results indicate that a domain encoded by the first two exons probably interacts with, and can effectively titrate, the unknown cellular factor(s) through which ICP0 mediates transactivation.  相似文献   

7.
8.
Virus infection induces a rapid cellular response in cells characterized by the induction of interferon. While interferon itself does not induce an antiviral response, it activates a number of interferon-stimulated genes that collectively function to inhibit virus replication and spread. Previously, we and others reported that herpes simplex virus type 1 (HSV-1) induces an interferon -independent antiviral response in the absence of virus replication. Here, we report that the HSV-1 proteins ICP0 and vhs function in concert to disable the host antiviral response. In particular, we show that ICP0 blocks interferon regulatory factor IRF3- and IRF7-mediated activation of interferon-stimulated genes and that the RING finger domain of ICP0 is essential for this activity. Furthermore, we demonstrate that HSV-1 modifies the IRF3 pathway in a manner different from that of the small RNA viruses most commonly studied.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins are required for the expression of viral early and late proteins. It has been hypothesized that host neuronal proteins regulate expression of HSV-1 IE genes that in turn control viral latency and reactivation. We investigated the ability of neuronal proteins in vivo to activate HSV-1 IE gene promoters (ICP0 and ICP27) and a late gene promoter (gC). Transgenic mice containing IE (ICP0 and ICP27) and late (gC) gene promoters of HSV-1 fused to the Escherichia coli beta-galactosidase coding sequence were generated. Expression of the ICP0 and ICP27 reporter transgenes was present in anatomically distinct subsets of neurons in the absence of viral proteins. The anatomic locations of beta-galactosidase-positive neurons in the brains of ICP0 and ICP27 reporter transgenic mice were similar and included cerebral cortex, lateral septal nucleus, cingulum, hippocampus, thalamus, amygdala, and vestibular nucleus. Trigeminal ganglion neurons were positive for beta-galactosidase in adult ICP0 and ICP27 reporter transgenic mice. The ICP0 reporter transgene was differentially regulated in trigeminal ganglion neurons depending upon age. beta-galactosidase-labeled cells in trigeminal ganglia and cerebral cortex of ICP0 and ICP27 reporter transgenic mice were confirmed as neurons by double labeling with antineurofilament antibody. Nearly all nonneuronal cells in ICP0 and ICP27 reporter transgenic mice and all neuronal and nonneuronal cells in gC reporter transgenic mice were negative for beta-galactosidase labeling in the absence of HSV-1. We conclude that factors in neurons are able to differentially regulate the HSV-1 IE gene promoters (ICP0 and ICP27) in transgenic mice in the absence of viral proteins. These findings are important for understanding the regulation of the latent and reactivated stages of HSV-1 infection in neurons.  相似文献   

10.
11.
12.
Z Zhu  W Cai    P A Schaffer 《Journal of virology》1994,68(5):3027-3040
The results of transient expression assays and studies of viral mutants have shown that three of the five immediate-early proteins of herpes simplex virus type 1 (HSV-1) perform regulatory functions, individually and cooperatively. As part of efforts designed to explore the molecular basis for the functional cooperativity among ICP0, ICP4, and ICP27 in the regulation of HSV gene expression, we have examined the intracellular localization of ICP0 in cells infected with ICP4 and ICP27 null mutant viruses by indirect immunofluorescence. Although ICP0 was localized predominantly to the nuclei of wild-type virus-infected cells, it was found exclusively in the nuclei of ICP27 mutant-infected cells and in both the cytoplasm and nuclei of ICP4 mutant-infected cells, the cytoplasmic component being especially strong. These observations indicate that both ICP4 and ICP27 can affect the intracellular localization of ICP0. Transient expression assays with plasmids that express wild-type and mutant forms of ICP0, ICP4, and ICP27 confirmed that ICP4 promotes and that ICP27 inhibits the nuclear localization of ICP0. These results confirm the observations made for mutant virus-infected cells and indicate that the localization pattern seen in infected cells can be established by these three immediate-early proteins exclusive of other viral proteins. The C-terminal half of ICP27 was shown to be required to achieve its inhibitory effect on the nuclear localization of ICP0. The region of ICP0 responsive to ICP27 was mapped to the C terminus of the molecule between amino acid residues 720 and 769. In addition, the concentration of ICP27 was shown to have a significant effect on the intracellular localization of ICP0. Because the major regulatory activities of ICP0, ICP4, and ICP27 are expressed in the nucleus, the ability of these three proteins collectively to determine their own localization patterns within cells adds a new dimension to the complex process of viral gene regulation in HSV.  相似文献   

13.
14.
15.
16.
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) regulatory protein ICP0 is required for efficient progression of infected cells into productive lytic infection, especially in low-multiplicity infections of limited-passage human fibroblasts. We have used single-cell-based assays that allow detailed analysis of the ICP0-null phenotype in low-multiplicity infections of restrictive cell types. The major conclusions are as follows: (i) there is a threshold input multiplicity above which the mutant virus replicates normally; (ii) individual cells infected below the threshold multiplicity have a high probability of establishing a nonproductive infection; (iii) such nonproductively infected cells have a high probability of expressing IE products at 6 h postinfection; (iv) even at 24 h postinfection, IE protein-positive nonproductively infected human fibroblast cells exceed the number of cells that lead to plaque formation by up to 2 orders of magnitude; (v) expression of individual IE proteins in a proportion of the nonproductively infected cells is incompletely coordinated; (vi) the nonproductive cells can also express early gene products at low frequencies and in a stochastic manner; and (vii) significant numbers of human fibroblast cells infected at low multiplicity by an ICP0-deficient virus are lost through cell death. We propose that in the absence of ICP0 expression, HSV-1 infected human fibroblasts can undergo a great variety of fates, including quiescence, stalled infection at a variety of different stages, cell death, and, for a minor population, initiation of formation of a plaque.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) mutant d109 does not express any of the immediate-early (IE) proteins and persists in cells for a prolonged length of time. As has been shown by Nicholl et al. (J. Gen. Virol. 81:2215-2218, 2000) and Mossman et al. (J. Virol. 75:750-758, 2001) using other mutants defective for IE gene expression, infection with d109 induced the expression of a number of interferon-stimulated genes. Induction of these genes was significantly greater at multiplicities of infection (MOI) of 10 PFU/cell or greater, and the resulting antiviral effect was only seen at MOIs greater than 10 PFU/cell. Using mutants defective for sets of IE genes established that the lack of ICP0 expression was necessary for high levels of interferon-stimulated gene expression in HEL cells. The induction of interferon-stimulated genes by d109 could also be inhibited by infection with an E1-:E3-:E4- adenovirus expressing levels of ICP0 that are comparable to those expressed within the first hour of wild-type virus infection. Lastly, the addition of the proteasome inhibitor MG132 to cells infected with a mutant that expresses ICP0, d106, also resulted in the induction of interferon-stimulated genes. Thus, ICP0 may function through the proteasome very early in HSV infection to inhibit a cellular antiviral response induced by the virion.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号