共查询到20条相似文献,搜索用时 15 毫秒
1.
Signaling pathways mediating gastrin's growth-promoting effects. 总被引:2,自引:0,他引:2
R R Yassin 《Peptides》1999,20(7):885-898
In addition to its fundamental role in stimulating gastric acid secretion, the peptide hormone gastrin induces growth-promoting effects on diversity of target cells. Various mechanisms, including endocrine, paracrine, and autocrine, have been proposed for gastrin's growth-promoting actions. The mitogenic effects of gastrin are mediated by specific cell surface receptors activated after gastrin binding. The functionally defined receptors for gastrin include cholecystokinin A (CCKA) receptor, which is discriminating for sulfated CCK8; cholecystokinin B (CCKB)/gastrin receptor, which binds gastrin17 sulfated, and nonsulfated CCK8 with nearly equal affinities; cholecystokinin C (CCKC), which is a low-affinity gastrin binding protein; and novel, high-affinity receptors selective for amidated gastrin, processing intermediates of gastrin, or both. The signaling pathways mediating gastrin's stimulation of the CCKB/gastrin receptor have been progressively outlined, and the pathways mediating other receptors have been slowly emerging. Engagement of the gastrin receptor initiates various biochemical and molecular events, including recruitment and activation of tyrosine kinases, activation of the phospholipase C signaling pathway leading to phosphoinositide breakdown, intracellular calcium mobilization and protein kinase C stimulation, activation of the mitogen-activated protein kinase pathway, and induction of early response genes. Current emphasis is on understanding the functional significance of processing intermediate forms of gastrin, and the receptor subtypes and pathways that promote the trophic/mitogenic effects of the different molecular forms of gastrin. 相似文献
2.
3.
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory. 相似文献
4.
Huang J Zhou H Mahavadi S Sriwai W Lyall V Murthy KS 《American journal of physiology. Gastrointestinal and liver physiology》2005,288(1):G23-G31
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction. 相似文献
5.
6.
7.
The application of molecular genetic techniques has led to the identification of olfactory-specific proteins that represent each component in a second messenger cascade. Our current understanding of signaling in the olfactory system suggests that receptor proteins of a large family, responsible in part for the specificity of the system, converge on a relatively small number of second messenger systems. The ability to express these elements in heterologous systems should allow for the reconstitution of the signaling cascade and provide insight into the specificity of ligand binding, pathway activation, and signal termination. 相似文献
8.
Bruce G. Wallace 《BioEssays : news and reviews in molecular, cellular and developmental biology》1996,18(10):777-780
Recent experiments have begun to decipher the molecular dialog that mediates differentiation at sites of synaptic between neurons and their targets. It had been hypothesized that the protein agrin is released by axon terminals at embryonic neuromuscular junctions and binds to a receptor on the myofiber surface to trigger postsynaptic differentiation. Now a genetic ‘Knockout’ experiment has confirmed the essential role of agrin in signaling between developing nerve and muscle(1). A second ‘knockout’ has shown that the muscle-specific receptor tyrosine kinase MuSK is a critical element in the agrin-induced signaling cascade(2). Additional results suggest that MuSK may comprise a portion of the agrin receptor(3). 相似文献
9.
Unlike most other organs, development of the mammary gland occurs predominantly after birth, under the control of steroid and peptide hormones. Once the gland is established, cycles of proliferation, functional differentiation, and death of alveolar epithelium occur repeatedly with each pregnancy. Although it is unique in this respect, the signaling pathways utilized by the gland are shared with other cell types, and have been tailored to meet the needs of this secretory tissue. Here we discuss the signaling pathways that have been adopted by the mammary gland for its own purposes, and the functions they perform. 相似文献
10.
11.
The astrocytomas represent the most common primary tumors of the brain. Despite efforts to improve the treatment of astrocytomas, these tumors and in particular the high-grade astrocytoma termed glioblastoma multiforme still carry a poor prognosis. In recent years, there has been an intensive effort to gain an understanding of the cellular and molecular mechanisms that contribute to the pathogenesis of astrocytomas as a first step toward the development of better treatments for these devastating tumors. Here, we will review our current understanding of the signaling pathways that underlie glial transformation. Studies of astrocytomas have led to the identification of two major groups of signaling proteins whose abnormalities contribute to gliomagenesis: the cell cycle pathways and the growth factor-regulated signaling pathways. Among the cell cycle proteins, the p16-cdk4-pRb and ARF-MDM2-p53 cell cycle arrest pathways play a prominent role in glial transformation. In addition, deregulation of polypeptide growth factors acting via receptor tyrosine kinases (RTKs) and of intracellular signals, including the lipid phosphatase PTEN, that regulate cellular responses to RTKs plays a critical role in gliomagenesis. In addition to the identification of the signaling proteins targeted in glial transformation, the cell-of-origin of astrocytomas has been investigated. Genetic modeling of astrocytomas in mice suggests that neuroepithelial precursor cells represent preferred cellular substrates of gliomas or that either astrocytes or precursor cells constitute potential cells-of-origin of astrocytomas. During normal brain development, neuroepithelial precursor cells, including neural stem cells, differentiate into astrocytes. As the mechanisms that control gliogenesis during normal brain development become better understood, it will be important to determine if deregulation of these mechanisms might contribute to the pathogenesis of astrocytomas. The elucidation of the molecular underpinnings of astrocytomas holds the promise of improved treatment options for patients with these devastating brain tumors. 相似文献
12.
Although prefrontal cortex has been implicated in the cognitive regulation of emotion, the cortical-subcortical interactions that mediate this ability remain poorly understood. To address this issue, we identified a right ventrolateral prefrontal region (vlPFC) whose activity correlated with reduced negative emotional experience during cognitive reappraisal of aversive images. We then applied a pathway-mapping analysis on subcortical regions to locate mediators of the association between vlPFC activity and reappraisal success (i.e., reductions in reported emotion). Results identified two separable pathways that together explained approximately 50% of the reported variance in self-reported emotion: (1) a path through nucleus accumbens that predicted greater reappraisal success, and (2) a path through ventral amygdala that predicted reduced reappraisal success (i.e., more negative emotion). These results provide direct evidence that vlPFC is involved in both the generation and regulation of emotion through different subcortical pathways, suggesting a general role for this region in appraisal processes. 相似文献
13.
Thomas L Hilder Lisa A Baer Patrick M Fuller Charles A Fuller Richard E Grindeland Charles E Wade Lee M Graves 《Journal of applied physiology》2005,99(6):2181-2188
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy. 相似文献
14.
Invasion of viruses and bacteria is initially sensed by the host innate immune system, and evokes a rapid inflammatory response. Nucleotides from RNA viruses are recognized by retinoic-acid-inducible gene I-like helicases and Toll-like receptors, and this recognition triggers signaling cascades that induce antiviral mediators such as type I interferons. By contrast, Toll-like receptors recognizing bacterial components induce the expression of proinflammatory cytokines. Furthermore, recent studies suggest that viral and bacterial DNA also induce interferons in a Toll-independent mechanism, possibly through unidentified cytoplasmic receptor(s). 相似文献
15.
Signaling pathways in sperm capacitation and acrosome reaction. 总被引:9,自引:0,他引:9
H Breitbart 《Cellular and molecular biology, including cyto-enzymology》2003,49(3):321-327
The binding to the egg's zona pellucida stimulates the spermatozoon to undergo acrosome reaction, a process which enables the sperm to penetrate the egg. Prior to this binding, the spermatozoa underago in the female reproductive tract a series of biochemical transformations, collectively called capacitation. The first event in capacitation is cholesterol efflux leading to the elevation of intracellular calcium and bicarbonate to activate adenylyl cyclase (AC) to produce cyclic-AMP, which activates protein kinase A (PKA) to indirectly phosphorylate certain proteins on tyrosine. During capacitation, there is also an increase in protein tyrosine phosphorylation dependent actin polymerization and in the membrane-bound phospholipase C (PLC). Sperm binding to zona-pellucida causes further activation of cAMP/PKA and protein kinase C (PKC), respectively. PKC opens a calcium channel in the plasma membrane. PKA together with inositol-trisphosphate activate calcium channels in the outer acrosomal membrane, which leads to an increase in cytosolic calcium. The depletion of calcium in the acrosome will activate a store-operated calcium entry mechanism in the plasma membrane, leading to a higher increase in cytosolic calcium, resulting in F-actin dispersion which enable the outer acrosomal and the plasma membrane to come into contact and fuse completing the acrosomal reaction. 相似文献
16.
Eduardo Latorre M Pilar Collado Inmaculada Fernández M Dolores Aragonés R Edgardo Catalán 《European journal of biochemistry》2003,270(1):36-46
Ceramide is a lipid second messenger that acts on multiple-target enzymes, some of which are involved in other signal-transduction systems. We have previously demonstrated that endogenous ceramide modifies the metabolism of brain ethanolamine plasmalogens. The mechanism involved was studied. On the basis of measurements of breakdown products, specific inhibitor effects, and previous findings, we suggest that a plasmalogen-selective phospholipase A2 is the ceramide target. Arachidonate-rich pools of the diacylphosphatidylethanolamine subclass were also affected by ceramide, but the most affected were plasmalogens. Concomitantly with production of free arachidonate, increased 1-O-arachidonoyl ceramide formation was observed. Quinacrine (phospholipase A2 inhibitor) and 1-O-octadecyl-2-O-methyl-rac-glycerol-3-phosphocholine (CoA-independent transacylase inhibitor) prevented all of these ceramide-elicited effects. Therefore, phospholipase and transacylase activities are tightly coupled. Okadaic acid (phosphatase 2A inhibitor) and PD 98059 (mitogen-activated protein kinase inhibitor) modified basal levels of ceramide and sphingomyelinase-induced accumulation of ceramide, respectively. Therefore, they provided no evidence to determine whether there is a sensitive enzyme downstream of ceramide. The evidence shows that there are serine-dependent and thiol-dependent enzymes downstream of ceramide generation. Furthermore, experiments with Ac-DEVD-CMK (caspase-3 specific inhibitor) have led us to conclude that caspase-3 is downstream of ceramide in activating the brain plasmalogen-selective phospholipase A2. 相似文献
17.
18.
Signaling pathways regulating murine pancreatic development 总被引:1,自引:0,他引:1
Serup P 《Seminars in cell & developmental biology》2012,23(6):663-672
19.
A. V. Shirokova 《Cell and Tissue Biology》2007,1(3):215-224
Current data on the alteration of the monovalent ion balance, pH and the membrane potential during apoptosis are summarized and considered with respect to ionic mechanisms of the apoptotic cell shrinkage. A brief survey of the main signaling pathways involved in apoptosis, such as receptor-and mitochondria-mediated pathways of the caspase-dependent and caspase-independent apoptosis is given. The data on the alteration of the distinct ion transporters and channels of the plasma membrane during apoptosis are considered. 相似文献
20.
AbstractThe molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. 相似文献