首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thymic epithelium provides an essential cellular substrate for T cell development and selection. Gradual age-associated thymic atrophy leads to a reduction in functional thymic tissue and a decline in de novo T cell generation. Development of strategies tailored toward regeneration of thymic tissue provides an important possibility to improve immune function in elderly individuals and increase the capacity for immune recovery in patients having undergone bone marrow transfer following immunoablative therapies. In this study we show that restriction of the size of the functional thymic epithelial progenitor pool affects the number of mature thymic epithelial cells. Using an embryo fusion chimera-based approach, we demonstrate a reduction in the total number of both embryonic and adult thymic epithelium, which relates to the initial size of the progenitor cell pool. The inability of thymic epithelial progenitor cells to undergo sufficient compensatory proliferation to rescue the deficit in progenitor numbers suggests that in addition to extrinsic regulation of thymus growth by provision of growth factors, intrinsic factors such as a proliferative restriction of thymic epithelial progenitors and availability of progenitor cell niches may limit thymic epithelial recovery. Collectively, our data demonstrate an important level of regulation of thymic growth and recovery at the thymic epithelial progenitor level, providing an important consideration for developing methods targeted toward inducing thymic regeneration.  相似文献   

3.
A majority of the cells in the Arabidopsis hypocotyl undergo endoreduplication. The number of endocycles in this organ is partially controlled by light. Up to two cycles occur in light-grown hypocotyls, whereas in the dark about 30% of the cells go through a third cycle. Is the inhibition of the third endocycle in the light an indirect result of the reduced cell size in the light-grown hypocotyl, or is it under independent light control? To address this question, the authors examined the temporal and spacial patterns of endoreduplication in light- or dark-grown plants and report here on the following observations: (i) during germination two endocycles take place prior to any significant cell expansion; (ii) in the dark the third cycle is completed very early during cell growth; and (iii) a mutation that dramatically reduces cell size does not interfere with the third endocycle. The authors then used mutants to study the way light controls the third endocycle and found that the third endocycle is completely suppressed in far red light through the action of phytochrome A and, to a lesser extent, in red light by phytochrome B. Furthermore, no 16C nuclei were observed in dark-grown constitutive photomorphogenic 1 seedlings. And, finally the hypocotyl of the cryptochrome mutant, hy4, grown in blue light was about three times longer than that of the wild-type without a significant difference in ploidy levels. Together, the results support the view that the inhibition of the third endocycle in light-grown hypocotyls is not the consequence of a simple feed-back mechanism coupling the number of cycles to the cell volume, but an integral part of the phytochrome-controlled photomorphogenic program.  相似文献   

4.
5.
The cytokine-transforming growth factor beta1 (TGFB1) is implicated in development of the mammary gland through regulation of epithelial cell proliferation and differentiation during puberty and pregnancy. We compared mammary gland morphogenesis in virgin Tgfb1(+/+), Tgfb1(+/-), and Tgfb1(-/-) mice and transplanted Tgfb1(+/+) and Tgfb1(-/-) epithelium to determine the impact of TGFB1 deficiency on development. When mammary gland tissue was evaluated relative to the timing of puberty, invasion through the mammary fat pad of the ductal epithelium progressed similarly, irrespective of genotype, albeit fewer terminal end buds were observed in mammary glands from Tgfb1(-/-) mice. The terminal end buds appeared to be normal morphologically, and a comparable amount of epithelial proliferation was evident. When transplanted into wild-type recipients, however, Tgfb1(-/-) epithelium showed accelerated invasion compared with Tgfb1(+/+) epithelium. This suggests that the normal rate of ductal extension in Tgfb1(-/-) null mutant mice is the net result of impaired endocrine or paracrine support acting to limit the consequences of unrestrained epithelial growth. By adulthood, mammary glands in cycling virgin Tgfb1(-/-) mice were morphologically similar to those in Tgfb1(+/+) and Tgfb1(+/-) animals, with a normal branching pattern, and the tissue differentiated into early alveolar structures in the diestrous phase of the ovarian cycle. Transplanted mammary gland epithelium showed a similar extent of ductal branching and evidence of secretory differentiation of luminal cells in pregnancy. These results reveal two opposing actions of TGFB1 during pubertal mammary gland morphogenesis: autocrine inhibition of epithelial ductal growth, and endocrine or paracrine stimulation of epithelial ductal growth.  相似文献   

6.
7.
Blastomeres of starfish embryos begin to increase in adhesiveness after the eighth cleavage and form a monolayered hollow blastula. To investigate factors that affect the timing of the adhesiveness increase, we changed the volume of the cytoplasm or the ploidy of embryos and examined the morphologic changes in the descendent blastomeres during early cleavage stages. In parthenogenetic embryos, in which the ploidy is doubled, the timing of the increase in adhesiveness was accelerated by one cell cycle. In contrast, the timing was delayed by approximately one cell cycle in a large-sized embryo formed by the fusion of an egg and a non-nucleate egg fragment. These two sets of observations are in accord with the expectation from the classical concept that the DNA: cytoplasmic ratio may direct the timing of events in early development. However, observations of small-sized embryos with a reduced amount of cytoplasm were contradictory to the expectation based on the DNA: cytoplasmic ratio; the timing of the increase in adhesiveness in half-sized embryos was almost the same as in control embryos and the timing was delayed by only one cell cycle in quarter-sized embryos. Measurement of the diameters of nuclei showed that the size of nuclei was variable, depending on the stage of development, the volume of cytoplasm and ploidy. We calculated a volume ratio of nucleus to cytoplasm (N: C volume ratio) for tetraploid, large-, half- and quarter-sized embryos. We found that the embryonic cells begin to adhere always when their N: C volume ratio reaches 0.06. A plausible model for the cellular timing mechanism of cell contact is proposed.  相似文献   

8.
The developing wings of butterflies and moths are composed of two epithelial monolayers. Each epithelial sheet is made up of two kinds of cells, diploid cells that make up the epidermal surface and body of the wing, and large polyploid cells that become the scale-building cells whose cytoplasmic projections develop into the scales that will cover the adult wing and bear the pigment pattern. We studied the development of polyploidization of the scale-building cells during the pupal stage of the tobacco hornworm moth, Manduca sexta. The endomitotic divisions of the presumptive scale-building cells and the mitotic divisions of the diploid epithelial cells begin on day 3 of the pupal stage and continue until day 7. We show that scales of different colors and positions on the wing differ in size, and that the size of the scale is proportional to the ploidy of the scale-building cell. Scale-building cells are arranged in irregular rows and within each row there is an alternation of ploidy levels, with the lower ploidy cells giving rise to the underscales and the higher ploidy cells giving rise to the cover scales that carry the color pattern. Along the wing there is a proximo-distal decreasing gradient of average ploidy and scale size. Scale-building cells of high ploidy are surrounded by fewer epidermal cells than those of low ploidy. This inverse relationship is known as Henke's compensation principle, which posits that the number of endomitoses of a pre-polyploid cell and the number of mitotic divisions of its diploid daughter cell add up to a constant. We show that the inverse relationship fits the predictions of the compensation principle and does not fit constraints imposed by packing density, and we discuss mechanisms that could give rise to the inverse relationship.  相似文献   

9.
10.
The reaction of the bladder epithelium of mice, following stimulation with a carcinogen, 4-ethylsulphonylnaphthalene-1-sulphonamide (ENS), was studied. A wave of cell division was induced in the resting epithelium, diploid and tetraploid cells being the main dividing elements; some of the high ploidy surface cells also underwent division. The cell cycle time for the diploid and tetraploid cells appeared to be identical. There was considerable variation in the intensity and timing of the onset of cell division in the bladder epithelium of individual animals. ENS caused severe damage to the surface cells of the bladder epithelium as indicated by increased lysosomes and the formation of large vacuoles.  相似文献   

11.
Plant cells frequently undergo endoreduplication, a process in which chromosomal DNA is successively duplicated in the absence of mitosis. It has been proposed that endoreduplication is regulated at its entry by mitotic cyclin-dependent kinase activity. However, the regulatory mechanisms for its termination remain unclear, although plants tightly control the ploidy level in each cell type. In the process of searching for regulatory factors of endoreduplication, the promoter of an Arabidopsis thaliana cyclin A gene, CYCA2;3, was revealed to be active in developing trichomes during the termination period of endoreduplication as well as in proliferating tissues. Taking advantage of the situation that plants encode highly redundant cyclin A genes, we were able to perform functional dissection of CYCA2;3 using null mutant alleles. Null mutations of CYCA2;3 semidominantly promoted endocycles and increased the ploidy levels achieved in mature organs, but they did not significantly affect the proportion of cells that underwent endoreduplication. Consistent with this result, expression of the CYCA2;3-green fluorescent protein fusion protein restrained endocycles in a dose-dependent manner. Moreover, a mutation in the destruction box of CYCA2;3 stabilized the fusion protein in the nuclei and enhanced the restraint. We conclude that CYCA2;3 negatively regulates endocycles and acts as a key regulator of ploidy levels in Arabidopsis endoreduplication.  相似文献   

12.
The histological development of the quail oviduct and the changes in concentrations of progesterone receptor, ovalbumin, conalbumin, ovomucoid and ovoglycocomponents are analyzed during the period spanning 7-35 days of age. The initiation of luminal epithelial cell proliferation is the first event of magnum growth. The epithelial cells begin to evaginate into subepithelial stroma and form tubular glands. Meanwhile, luminal epithelium starts cellular pleomorphism through ciliogenesis. No egg white proteins are detectable in the developing glands; at the same time, the concentration of the progesterone receptor increases from about 5500 sites/cell to 30,300 sites/cell. Tubular gland cells then begin to synthetize and accumulate egg white proteins, mucous cells differentiate in the luminal epithelium, and the cell proliferation decreases and finally stops. Compared with earlier studies dealing with the blood levels of estrogen and progesterone in developing quails during the same period, and the cellular changes induced in the oviducts of ovariectomized and ovariectomized-hypophysectomized quail by exogenous steroids, these results distinguish between the cellular responses that are physiologically controlled by estradiol and other responses that have multihormonal regulation.  相似文献   

13.
14.
Role of timer and sizer in regulation of Chlamydomonas cell cycle   总被引:1,自引:0,他引:1  
To estimate the role that time and size had in controlling the Chlamydomonas cell cycle, we used a new on-chip single-cell microcultivation system, which involved the direct observation of single cells captured in microchambers made on a thin glass slide. The dependence of the pattern of energy supply for cells on its cell cycle was examined through a series of different intensities of continuous illumination in a minimal medium, and we found that cell division occurred when cells reached the critical size, which was 2.2 times larger than that of the newly created cells. When illumination stopped before cells reached the critical size, even though growth had stopped, they continued dividing during the delay time, which was shorter when cells were larger. With re-illumination after darkness, cells began to grow again and the timing of cell division was again controlled by the critical size. This indicates that the co-existence of two cell cycle regulation mechanisms and the sizer mechanism had a stronger influence than the timer.  相似文献   

15.
Genome ploidy in different stages of the Giardia lamblia life cycle   总被引:2,自引:0,他引:2  
The early diverging eukaryotic parasite Giardia lamblia is unusual in that it contains two apparently identical nuclei in the vegetative trophozoite stage. We have determined the nuclear and cellular genome ploidy of G. lamblia cells during all stages of the life cycle. During vegetative growth, the nuclei cycle between a diploid (2N) and tetraploid (4N) genome content and the cell, consequently, cycles between 4N and 8N. Stationary phase trophozoites arrest in the G2 phase with a ploidy of 8N (two nuclei, each with a 4N ploidy). On its way to cyst formation, a G1 trophozoite goes through two successive rounds of chromosome replication without an intervening cell division event. Fully differentiated cysts contain four nuclei, each with a ploidy of 4N, resulting in a cyst ploidy of 16N. The newly excysted cell, for which we suggest the term 'excyzoite', contains four nuclei (cellular ploidy 16N). In a reversal of the events occurring during encystation, the excyzoite divides twice to form four trophozoites containing two diploid nuclei each. The formation of multiple cells from a single cyst is likely to be one of the main reasons for the low infectious doses of G. lamblia .  相似文献   

16.
Endocycles, which are characterised by repeated rounds of DNA replication without intervening mitosis, are involved in developmental processes associated with an increase in metabolic cell activity and are part of terminal differentiation. Endocycles are currently viewed as a restriction of the canonical cell cycle. As such, mitotic cyclins have been omitted from the endocycle mechanism and their role in this process has not been specifically analysed. In order to study such a role, we focused on CycA, which has been described to function exclusively during mitosis in Drosophila. Using developing mechanosensory organs as model system and PCNA::GFP to follow endocycle dynamics, we show that (1) CycA proteins accumulate during the last period of endoreplication, (2) both CycA loss and gain of function induce changes in endoreplication dynamics and reduce the number of endocycles, and (3) heterochromatin localisation of ORC2, a member of the Pre-RC complex, depends on CycA. These results show for the first time that CycA is involved in endocycle dynamics in Drosophila. As such, CycA controls the final ploidy that cells reached during terminal differentiation. Furthermore, our data suggest that the control of endocycles by CycA involves the subnuclear relocalisation of pre-RC complex members. Our work therefore sheds new light on the mechanism underlying endocycles, implicating a process that involves remodelling of the entire cell cycle network rather than simply a restriction of the canonical cell cycle.  相似文献   

17.
The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development.  相似文献   

18.
When cell cycle withdrawal accompanies terminal differentiation, biosynthesis and cellular growth are likely to change also. In this study, nucleolus size was monitored during cell fate specification in the Drosophila eye imaginal disc using fibrillarin antibody labeling. Nucleolus size is an indicator of ribosome biogenesis and can correlate with cellular growth rate. Nucleolar size was reduced significantly during cell fate specification and differentiation, predominantly as eye disc cells entered a cell cycle arrest that preceded cell fate specification. This reduction in nucleolus size required Dpp and Hh signaling. A transient enlargement of the nucleolus accompanied cell division in the Second Mitotic Wave. Nucleoli continued to diminish in postmitotic cells following fate specification. These results suggest that cellular growth is regulated early in the transition from proliferating progenitor cells to terminal cell fate specification, contemporary with regulation of the cell cycle, and requiring the same extracellular signals.  相似文献   

19.
Lens development and differentiation are intricate and complex processes characterized by distinct molecular and morphological changes. The growth of a transparent lens involves proliferation of the epithelial cells and their subsequent differentiation into secondary fiber cells. Prior to differentiation, epithelial cells at the lens equator exit from the cell cycle and elongate into long, ribbon-like cells. Fiber cell elongation takes place bidirectionally as fiber tips migrate both anteriorly and posteriorly along the apical surface of the epithelium and inner surface of the capsule, respectively. The differentiating fiber cells move inward from the periphery to the center of the lens on a continuous basis as the lens grows throughout life. Finally, when fiber cells reach the center or suture line, their basal and apical tips detach from the epithelium and capsule, respectively, and interlock with cells from the opposite direction of the lens and form the suture line. Further, symmetric packing of fiber cells and degradation of most of the cellular organelle during fiber cell terminal differentiation are crucial for lens transparency. These sequential events are presumed to depend on cytoskeletal dynamics and cell adhesive interactions; however, our knowledge of regulation of lens fiber cell cytosketal reorganization, cell adhesive interactions and mechanotransduction, and their role in lens morphogenesis and function is limited at present. Recent biochemical and molecular studies have targeted cytoskeletal signaling proteins, including Rho GTPases, Abl kinase interacting proteins, cell adhesion molecules, myosin II, Src kinase and phosphoinositide 3-kinase in the developing chicken and mouse lens and characterized components of the fiber cell basal membrane complex. These studies have begun to unravel the vital role of cytoskeletal proteins and their regulatory pathways in control of lens morphogenesis, fiber cell elongation, migration, differentiation, survival and mechanical properties.  相似文献   

20.
Many studies have established the role of SPRR1B during squamous differentiation of skin and respiratory epithelial cells. However, its role in nonsquamous cells is largely unknown. We reported that expression of SPRR1B in Chinese hamster ovary (CHO) cells is increased as they enter the G0 phase of the cell cycle. The purpose of this study was to further investigate the SPRR1B expression pattern in nonsquamous tumors and to study its role in these cells. Expression of SPRR1B was detected by Northern blotting in a higher percentage of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced compared with beryllium metal-induced rat lung adenocarcinomas. In situ hybridizations confirmed that SPRR1B is expressed in individual or clusters of cells of nonsquamous cells from mouse, rat, and human adenocarcinomas. The same pattern of expression was observed in adenocarcinomas formed in nude mice from cell lines established from adenocarcinomas. SPRR1B expression was downregulated in the cell lines derived from adenocarcinoma when cells were enriched in G0 at low confluence. Tetraploidy was induced in CHO, mouse, and human tumor cell lines by stably overexpressing SPRR1B, whereas control cells showed no change in ploidy. Inducible expression of this protein for shorter periods using the ecdyson system did not affect growth rate or the ploidy of CHO cells but accelerated entry into G0/G1 compared with controls. These findings indicate that SPRR1B is likely coupled primarily to signals responsible for withdrawal from the proliferative state rather than the final stages of cellular quiescence and that its overexpression for prolonged periods may disrupt the normal progression of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号