首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Telomerase regulation is critical to genome maintenance yet remains poorly understood. Without telomerase's ability to synthesize telomere repeats, chromosome ends shorten progressively, as conventional DNA polymerases cannot fully replicate the ends of linear molecules. In Saccharomyces cerevisiae, telomerase activity in vivo absolutely depends on a set of telomerase accessory proteins that includes Est1p, which appears to recruit or activate telomerase at the site of polymerization. Thus, est1Delta cells have the same cellular senescence phenotype as cells lacking either the catalytic protein subunit of telomerase or its template-containing RNA subunit. While the telomerase protein is highly conserved among eukaryotes, the apparent lack of Est1p homologs has frustrated efforts to describe a common mechanism of telomerase recruitment and activation. Here, we describe SpEst1p, a homolog of Est1p from the evolutionarily distant Schizosaccharomyces pombe. Like ScEst1p, SpEst1p is required for telomerase activity in vivo. Coupled with the identification of an orthologous Est1 protein in humans [10], this suggests a much wider conservation of telomerase regulation than was previously known. Strikingly, in cells with compromised telomere function (taz1Delta), SpEst1p loss confers a lethal germination phenotype, while telomerase loss does not, indicating that SpEst1p plays an unexpected additional role in chromosome end protection.  相似文献   

2.
The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.  相似文献   

3.
Werner syndrome (WS) is marked by early onset of features resembling aging, and is caused by loss of the RecQ family DNA helicase WRN. Precisely how loss of WRN leads to the phenotypes of WS is unknown. Cultured WS fibroblasts shorten their telomeres at an increased rate per population doubling and the premature senescence this loss induces can be bypassed by telomerase. Here we show that WRN co-localizes with telomeric factors in telomerase-independent immortalized human cells, and further that the budding yeast RecQ family helicase Sgs1p influences telomere metabolism in yeast cells lacking telomerase. Telomerase-deficient sgs1 mutants show increased rates of growth arrest in the G2/M phase of the cell cycle as telomeres shorten. In addition, telomerase-deficient sgs1 mutants have a defect in their ability to generate survivors of senescence that amplify telomeric TG1-3 repeats, and SGS1 functions in parallel with the recombination gene RAD51 to generate survivors. Our findings indicate that Sgs1p and WRN function in telomere maintenance, and suggest that telomere defects contribute to the pathogenesis of WS and perhaps other RecQ helicase diseases.  相似文献   

4.
DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3'-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Delta also hypersensitizes partially recombination-defective cells to camptothecin-induced 3'-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Delta cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair "clean" endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Delta leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Delta causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance.  相似文献   

5.
Maringele L  Lydall D 《Genetics》2004,166(4):1641-1649
Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70delta mre11delta cells and type II survivors in tlc1delta cells. Moreover, in tlc1delta cells, EXO1 seems to contribute to the senescence process itself.  相似文献   

6.
SGS1 is required for telomere elongation in the absence of telomerase   总被引:22,自引:0,他引:22  
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors arise through the abrupt addition of long tracts of telomere repeats. Both mechanisms are dependent on RAD52 and on either RAD50 or RAD51. We show here that the telomere elongation pathway in yeast (type II) is dependent on SGS1, the yeast homolog of the gene products of Werner's (WRN) and Bloom's (BLM) syndromes. Survival in the absence of SGS1 and EST2 is dependent upon RAD52 and RAD51 but not RAD50. We propose that the RecQ family helicases are required for processing a DNA structure specific to eroding telomeres.  相似文献   

7.
In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.  相似文献   

8.
Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span.  相似文献   

9.
Roles of Pif1-like helicases in the maintenance of genomic stability   总被引:4,自引:1,他引:3  
The Pif1p family of DNA helicases is conserved from yeast to humans. To date, four members of this family have been analyzed in some detail by in vitro and in vivo assays: the two baker's yeast helicases, ScPif1p and Rrm3p, the fission yeast Pfh1p and the human enzyme hPif1p. In vitro, these enzymes are 5′ to 3′ DNA helicase and show little processivity. In vivo, ScPif1p, Rrm3p and probably Pfh1p, function in both the nucleus at specific genomic loci and in mitochondria, where they are needed for the stable maintenance of the genome as accessory helicases to the replication machinery. Interestingly, they act on common DNA substrates but appear to have largely non-overlapping cellular functions, ranging from Okazaki fragment processing, telomerase inhibition, to helping the replication fork progress through non-nucleosomal protein–DNA complexes. For example, both ScPif1p and Rrm3p affect the replication of telomeres, but in a different way: Pif1p inhibits telomerase-mediated telomere elongation by directly removing telomerase from a DNA end, whereas Rrm3p facilitates replication through telomeric DNA. Here we review the current knowledge on the Pif1-like helicases, as a first step towards understanding the basis of their functional specialization and mechanism of action.  相似文献   

10.
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell.  相似文献   

11.
Homologous recombination and repair factors are known to promote both telomere replication and recombination‐based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase‐positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase‐negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi‐solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II‐like as well as ALT‐like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I‐like telomere features. In addition, we observed direct physical interactions between Blm and two telomere‐binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.  相似文献   

12.
Est1 is a component of yeast telomerase, and est1 mutants have senescence and telomere loss phenotypes. The exact function of Est1 is not known, and it is not homologous to components of other telomerases. We previously showed that Est1 protein coimmunoprecipitates with Tlc1 (the telomerase RNA) as well as with telomerase activity. Est1 has homology to Ebs1, an uncharacterized yeast open reading frame product, including homology to a putative RNA recognition motif (RRM) of Ebs1. Deletion of EBS1 results in short telomeres. We created point mutations in a putative RRM of Est1. One mutant was unable to complement either the senescence or the telomere loss phenotype of est1 mutants. Furthermore, the mutant protein no longer coprecipitated with the Tlc1 telomerase RNA. Mutants defective in the binding of Tlc1 RNA were nevertheless capable of binding single-stranded TG-rich DNA. Our data suggest that an important role of Est1 in the telomerase complex is to bind to the Tlc1 telomerase RNA via an RRM. Since Est1 can also bind telomeric DNA, Est1 may tether telomerase to the telomere.  相似文献   

13.
Bessler JB  Zakian VA 《Genetics》2004,168(3):1205-1218
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.  相似文献   

14.
15.
Expression of the catalytic subunit of human telomerase (hTERT), in normal human fibroblasts allows them to escape replicative senescence. However, we have observed that populations of hTERT-immortalized human fibroblasts contain 3-20% cells with a senescent morphology. To determine what causes the appearance of these senescent-like cells, we used flow cytometry to select them from the population and analyzed them for various senescence markers, telomere length, and telomerase activity. This subpopulation of cells had elevated levels of p21 and hypophosphorylated Rb, but telomere length was similar to that of the immortal cells in the culture that was sorted. Surprisingly, telomerase activity in the senescent-like cells was significantly elevated compared with immortal cells from the same population, suggesting that high telomerase activity may induce the senescent phenotype. Furthermore, transfection of normal fibroblasts with a hTERT-expressing plasmid that confers high telomerase activity led to the induction of p21, a higher percentage of SA-beta-galactosidase-positive cells, and a greater number of cells entering growth arrest compared with controls. These results suggest that excessive telomerase activity may act as a hyperproliferative signal in cells and induce a senescent phenotype in a manner similar to that seen following overexpression of oncogenic Ras, Raf, and E2F1. Thus, there must be a critical threshold of telomerase activity that permits cell proliferation.  相似文献   

16.
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation.  相似文献   

17.
Evans SK  Lundblad V 《Genetics》2002,162(3):1101-1115
The telomerase-associated Est1 protein of Saccharomyces cerevisiae mediates enzyme access by bridging the interaction between the catalytic core of telomerase and the telomere-binding protein Cdc13. In addition to recruiting telomerase, Est1 may act as a positive regulator of telomerase once the enzyme has been brought to the telomere, as previously suggested by the inability of a Cdc13-Est2 fusion protein to promote extensive telomere elongation in an est1-Delta strain. We report here three classes of mutant Est1 proteins that retain association with the telomerase enzyme but confer different in vivo consequences. Class 1 mutants display a telomere replication defect but are capable of promoting extensive telomere elongation in the presence of a Cdc13-Est2 fusion protein, consistent with a defect in telomerase recruitment. Class 2 mutants fail to elongate telomeres even in the presence of the Cdc13-Est2 fusion, which is the phenotype predicted for a defect in the proposed second regulatory function of EST1. A third class of mutants impairs an activity of Est1 that is potentially required for the Ku-mediated pathway of telomere length maintenance. The isolation of mutations that perturb separate functions of Est1 demonstrates that a telomerase holoenzyme subunit can contribute multiple regulatory roles to telomere length maintenance.  相似文献   

18.
In the yeast Saccharomyces cerevisiae, chromosomes terminate with a repetitive sequence [poly(TG(1-3))] 350 to 500 bp in length. Strains with a mutation of TEL1, a homolog of the human gene (ATM) mutated in patients with ataxia telangiectasia, have short but stable telomeric repeats. Mutations of TLC1 (encoding the RNA subunit of telomerase) result in strains that have continually shortening telomeres and a gradual loss of cell viability; survivors of senescence arise as a consequence of a Rad52p-dependent recombination events that amplify telomeric and subtelomeric repeats. We show that a mutation in MEC1 (a gene related in sequence to TEL1 and ATM) reduces telomere length and that tel1 mec1 double mutant strains have a senescent phenotype similar to that found in tlc1 strains. As observed in tlc1 strains, survivors of senescence in the tel1 mec1 strains occur by a Rad52p-dependent amplification of telomeric and subtelomeric repeats. In addition, we find that strains with both tel1 and tlc1 mutations have a delayed loss of cell viability compared to strains with the single tlc1 mutation. This result argues that the role of Tel1p in telomere maintenance is not solely a direct activation of telomerase.  相似文献   

19.
BACKGROUND: The Saccharomyces Mre11p, Rad50p, and Xrs2p proteins form a complex, called the MRX complex, that is required to maintain telomere length. Cells lacking any one of the three MRX proteins and Mec1p, an ATM-like protein kinase, undergo telomere shortening and ultimately die, phenotypes characteristic of cells lacking telomerase. The other ATM-like yeast kinase, Tel1p, appears to act in the same pathway as MRX: mec1 tel1 cells have telomere phenotypes similar to those of telomerase-deficient cells, whereas the phenotypes of tel1 cells are not exacerbated by the loss of a MRX protein. RESULTS: The nuclease activity of Mre11p was found to be dispensable for the telomerase-promoting activity of the MRX complex. The association of the single-stranded TG1-3 DNA binding protein Cdc13p with yeast telomeres occurred efficiently in the absence of Tel1p, Mre11p, Rad50p, or Xrs2p. Targeting of catalytically active telomerase to the telomere suppressed the senescence phenotype of mec1 mrx or mec1 tel1 cells. Moreover, when telomerase was targeted to telomeres, telomere lengthening was robust in mec1 mrx and mec1 tel1 cells. CONCLUSIONS: These data rule out models in which the MRX complex is necessary for Cdc13p binding to telomeres or in which the MRX complex is necessary for the catalytic activity of telomerase. Rather, the data suggest that the MRX complex is involved in recruiting telomerase activity to yeast telomeres.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号