首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human pathogen Mycoplasma genitalium employs homologous recombination to generate antigenic diversity in the immunodominant MgpB and MgpC proteins. Only recently, some of the molecular factors involved in this process have been characterized, but nothing is known about its regulation. Here, we show that M. genitalium expresses N‐terminally truncated RecA isoforms via alternative translation initiation, but only the full‐length protein is essential for gene variation. We also demonstrate that overexpression of MG428 positively regulates the expression of recombination genes, including recA, ruvA, ruvB and ORF2, a gene of unknown function co‐transcribed with ruvAB. The co‐ordinated induction of these genes correlated with an increase of mgpBC gene variation. In contrast, cells lacking MG428 were unable to generate variants despite expressing normal levels of RecA. Similarly, deletion analyses of the recA upstream region defined sequences required for gene variation without abolishing RecA expression. The requirement of these sequences is consistent with the presence of promoter elements associated with MG428‐dependent recA induction. Sequences upstream of recA also influence the relative abundance of RecA isoforms, possibly through translational regulation. Overall, these results suggest that MG428 is a positive regulator of recombination and that precise control of recA expression is required to initiate mgpBC variation.  相似文献   

2.
3.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

4.
In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.  相似文献   

5.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

6.
The recA gene of Aquaspirillum magnetotacticum has been isolated from a genomic library and introduced into a recA mutant strain of Escherichia coli K12. The cloned gene complemented both the recombination and DNA repair deficiency of the host and its protein product promoted the proteolytic cleavage of the LexA protein. A protein whose molecular weight is similar to that of the RecA protein of E. coli was associated with the cloned sequence.This paper is affectionately dedicated to Prof. John L. Ingraham  相似文献   

7.
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA + as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA + cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA + bacteria exposed to ionizing radiation.  相似文献   

8.
The RecA protein is a key enzyme involved in DNA recombination in bacteria. Using a polymerase chain reaction (PCR) amplification we cloned arecA homolog fromHelicobacter pylori. The gene revealed an open reading frame (ORF) encoding a putative protein of 37.6 kDa showing closest homology to theCampylobacter jejuni RecA (75.5% identity). A putative ribosome binding site and a near-consensus σ70 promoter sequence was found upstream ofrec A. A second ORF, encoding a putative protein with N-terminal sequence homology to prokaryotic and eukaryotic enolases, is located directly downstream ofrecA. Compared to the wild-type strains, isogenicH. pylori recA deletion mutants of strains 69A and NCTC11637 displayed increased sensitivity to ultraviolet light and abolished general homologous recombination. The recombinantH. pylori RecA protein produced inEscherichia coli strain GC6 (recA ?) was 38 kDa in size but inactive in DNA repair, whereas the corresponding protein inH. pylori 69A migrated at the greater apparent molecular weight of approx. 40 kDa in SDS-polyacrylamide gels. However, complementation of theH. pylori mutant using the clonedrecA gene on a shuttle vector resulted in a RecA protein of the original size and fully restored the general functions of the enzyme. These data can be best explained by a modification of RecA inH. pylori which is crucial for its function. The potential modification seems not to occur when the protein is produced inE. coli, giving rise to a smaller but inactive protein.  相似文献   

9.
In the pathogen Neisseria gonorrhoeae (Gc), the RecA protein is necessary for DNA repair, DNA transformation and pilus antigenic variation. Many bacteria contain a gene, recX, which has been suggested to downregulate recA through an unknown mechanism. To investigate the possible role of recX in Gc, we cloned and insertionally inactivated the recX gene. The recX loss-of-function mutant showed decreases in pilus phase variation, DNA transformation and DNA repair ability compared with wild type. We were able to complement all these deficiencies by supplying a functional copy of recX elsewhere in the chromosome. The recX mutant still showed increases in pilus phase variation under conditions of iron starvation, and the recX mutant showed levels of RecA protein equivalent to wild type. Although the precise role of recX in recombination remains unclear, RecX aids all RecA-related processes in Gc, and this is the first demonstration of a role for recX in homologous recombination in any organism.  相似文献   

10.
Summary The mechanism of the inhibition and of the recovery of DNA synthesis in E. coli following UV-irradiation was analysed in several mutants defective in repair or in the regulation of the RecA-LexA dependent SOS response. Several lines of evidence indicated that inhibition is not an inducible function and is probably due to the direct effect of lesions in the template blocking replisome movement.Recovery of DNA synthesis after UV was largely unaffected by mutations in the uvrA, recB or umuC genes. Resumption of DNA synthesis does however require protein synthesis and the regulatory action of recA. Experiments with a recA constitutive mutant and recA 200 (temperature sensitive RecA) demonstrated that RecA protein itself is directly required but is not sufficient for recovery of DNA synthesis. We therefore propose that recovery of DNA synthesis depends upon the concerted activity of RecA and the synthesis of an inducible Irr (induced replisome reactivation) factor under RecA control. We suggest that the mechanism of recovery involves the action of Irr and RecA to promote movement of replisomes past non-instructive lesions, uncoupled from polymerisation and/or that Irr and RecA are required to promote re-initiation of a stalled replication complex downstream of a UV-lesion subsequent to such an uncoupling step.  相似文献   

11.
We report here the construction of a homozygous recA460::cam insertion mutant of Synechocystis sp. PCC 6803 that may be useful for plant molecular genetics by providing a plant like host free of interference from homologous recombination. The homozygous recA460::cam mutant is highly sensitive to UVC under both photoreactivating and nonphotoreactivating conditions compared to the wild type (WT). The liquid culture of the mutant growing in ~800 lx accumulates nonviable cells to the tune of 86% as estimated by colony counts on plates incubated at the same temperature and light intensity. The generation time of recA mutant in standard light intensity (2,500 lx) increases to 50 h compared to 28 h in lower light intensity (~800 lx) that was used for selection, thus explaining the earlier failures to obtain a homozygous recA mutant. The WT, in contrast, grows at faster rate (23 h generation time) in standard light intensity compared to that at ~800 lx (26 h). The Synechocystis RecA protein supports homologous recombination during conjugation in recA mutant of Escherichia coli, but not the SOS response as measured by UV sensitivity. It is suggested that using this homozygous recA460::cam mutant, investigations can now be extended to dissect the network of DNA repair pathways involved in housekeeping activities that may be more active in cyanobacteria than in heterotrophs. Using this mutant for the first time we provide a genetic evidence of a mechanism independent of RecA that causes enhanced UVC resistance on light to dark transition.  相似文献   

12.
Summary The role of the recA gene product of Escherichia coli in genetic recombination was examined in a system where recombination takes place in the absence of protein synthesis. recA200 bacteria were infected with two mutant strains of phage lambda in the presence of chloramphenicol and rifampin, and the resulting recombinant DNA molecules were measured by in vitro packaging. When recA200 bacteria grown at a temperature that is permissive for RecA phenotype were transferred to a temperature that is restrictive for RecA phenotype in the presence of the inhibitors, recombination of the infecting phages was severely blocked. This result shows that the recombination activity of the recA200 cells is inactivated by the change of temperature even in the absence of protein synthesis. The most likely explanation of this result is that the recA protein is directly involved in the recombination detected in the presence of chloramphenicol and rifampin.  相似文献   

13.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

14.
RecA is important for recombination, DNA repair, and SOS induction. In Escherichia coli, RecBCD, RecFOR, and RecJQ prepare DNA substrates onto which RecA binds. UvrD is a 3'-to-5' helicase that participates in methyl-directed mismatch repair and nucleotide excision repair. uvrD deletion mutants are sensitive to UV irradiation, hypermutable, and hyper-rec. In vitro, UvrD can dissociate RecA from single-stranded DNA. Other experiments suggest that UvrD removes RecA from DNA where it promotes unproductive reactions. To test if UvrD limits the number and/or the size of RecA-DNA structures in vivo, an uvrD mutation was combined with recA-gfp. This recA allele allows the number of RecA structures and the amount of RecA at these structures to be assayed in living cells. uvrD mutants show a threefold increase in the number of RecA-GFP foci, and these foci are, on average, nearly twofold higher in relative intensity. The increased number of RecA-green fluorescent protein foci in the uvrD mutant is dependent on recF, recO, recR, recJ, and recQ. The increase in average relative intensity is dependent on recO and recQ. These data support an in vivo role for UvrD in removing RecA from the DNA.  相似文献   

15.
Chromosomal damage was detected previously in the recBCD mutants of the Antarctic bacterium Pseudomonas syringae Lz4W, which accumulated linear chromosomal DNA leading to cell death and growth inhibition at 4°C. RecBCD protein generally repairs DNA double‐strand breaks by RecA‐dependent homologous recombination pathway. Here we show that ΔrecA mutant of P. syringae is not cold‐sensitive. Significantly, inactivation of additional DNA repair genes ruvAB rescued the cold‐sensitive phenotype of ΔrecBCD mutant. The ΔrecA and ΔruvAB mutants were UV‐sensitive as expected. We propose that, at low temperature DNA replication encounters barriers leading to frequent replication fork (RF) arrest and fork reversal. RuvAB binds to the reversed RFs (RRFs) having Holliday junction‐like structures and resolves them upon association with RuvC nuclease to cause linearization of the chromosome, a threat to cell survival. RecBCD prevents this by degrading the RRFs, and facilitates replication re‐initiation. This model is consistent with our observation that low temperature‐induced DNA lesions do not evoke SOS response in P. syringae. Additional studies show that two other repair genes, radA (encoding a RecA paralogue) and recF are not involved in providing cold resistance to the Antarctic bacterium.  相似文献   

16.
From a Bacillus licheniformis wild type as well as a defined asporogenous derivative, stable UV hypersensitive mutants were generated by targeted deletion of the uvrBA operon, encoding highly conserved key components of the nucleotide excision repair. Comparative studies, which included the respective parental strains, revealed no negative side effects of the deletion, neither on enzyme secretion nor on vegetative propagation. Thus, the uvrBA locus proved to be a useful deletion target for achieving biological containment in this industrially exploited bacterium. In contrast to recA mutants, which also display UV hypersensitivity, further strain development via homologous recombination techniques will be still possible in such uvr mutants.  相似文献   

17.
18.
Summary The recA gene of the methylotrophic bacterium Methylomonas clara has been isolated from a genomic library by hybridization with the Escherichia coli recA gene. Its complete nucleotide sequence consists of 1029 bp encoding a polypeptide of 342 amino acids. Nucleotide sequence analysis of the M. clara recA gene revealed extensive homologies to recA genes from E. coli and Pseudomonas aeruginosa. Part of the physiological activity of the M. clara RecA protein has become evident in that E. coli recA mutant HB101 is complemented. The cloned recA gene has been modified in vitro by site-specific mutagenesis and by insertion of a kanamycin-resistance gene cassette into the recA coding sequence. M. clara recA mutants were obtained by replacement of the active recA gene by an in-vitro inactivated gene copy. Offprint requests to: K. Esser  相似文献   

19.
Previous workers reported that the T4 bacteriophage UvsX protein could promote neither RecA-LexA-mediated DNA repair nor induction of lysogenized bacteriophage, only recombination. Reexamination of these phenotypes demonstrated that, in contrast to these prior studies, when this gene was cloned into a medium but not a low-copy-number vector, it stimulated both a high frequency of spontaneous induction and mitomycin C-stimulated bacteriophage induction in a strain containing a recA13 mutation, but not a recA1 defect. The gene when cloned into a low- or medium- copy-number vector also promoted a low frequency of recombination of two duplicated genes in Escherichia coli in a strain with a complete recA gene deletion. These results suggest that a narrow concentration range of T4 UvsX protein is required to promote both high-frequency spontaneous and mitomycin C-stimulated bacteriophage induction in a recA13 gene mutant, but it facilitates recombination of duplicated genes at only a very low frequency in E. coli RecA mutants with a complete recA deletion. These results also suggest that the different UvsX phenotypes are affected differentially by the concentration of UvsX protein present. Received: 11 February 2002 / Accepted: 12 April 2002  相似文献   

20.
Plasmid pUC19-recAoc carrying a mutant allele of the recA gene, which plays the key role in the control of the SOS repair system and homologous recombinational repair, causes a 1.5-fold increase in radiation resistance of Escherichia coli ΔrecA cells, as compared to the wild-type recA + cells. The protective effect of this plasmid is drastically reduced in mutant lexA3 recAΔ21 deficient in the LexA protein and in induction of the SOS regulon. Plasmid pUC19-recAoc effectively suppresses UV sensitivity of the ΔrecA mutant. Mutation recAo20 allows constitutive high-level synthesis of the RecA protein. This mutation impairs the SOS box in the operator site of the recA gene and enhances heterology of the dimer LexA binding site. These data confirm that high level of the RecA protein synthesis per se is not sufficient for the expression of γ-inducible functions and that the derepression of lexA-dependent genes, other than recA gene, is necessary for the complete induction of the SOS repair system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号