首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiac fibroblasts (CFs) can over-proliferate during the progression of cardiac fibrosis, accompanied by a net accumulation of extracellular matrix proteins. Based on the profibrotic actions of transforming growth factor beta 1 (TGFβ1), investigating the mechanisms of TGFβ1 function in CFs may provide new directions to treatment for cardiac fibrosis. microRNAs (miRNAs) could control CFs proliferation or remodeling via binding to 3′-untranslated region of messenger RNA (mRNA) to negatively regulate gene expression. In the present study, we downloaded several microarray analyses results from GEO attempting to identify miRNAs and possible downstream targets that may be involved in TGF-β1 function in CFs and to detect the cellular and molecular functions of the identified miRNA–mRNA axis. Here, we identified miR-675 as a downregulated miRNA by TGFβ1 by bioinformatics analyses and experimental verification. Upon TGFβ1 stimulation, the protein levels of Α-SMAΑ-SMA, collagen I, and POSTN, and the secreted collagen in the cell culture supernatant significantly increased, whereas the miR-675 expression decreased. Smads mediate TGFβ1-induced suppression on miR-675 via binding miR-675 promoter region. miR-675 overexpression could inhibit, whereas miR-675 inhibition could enhance TGFβ1-induced mouse CFs (MCF) remodeling and proliferation. TGFβ receptor 1 (TGFβR1), a critical receptor in TGFβ1/Smad signaling, is a direct downstream target of miR-675. TGFβR1 overexpression significantly reverses the effect of miR-675 overexpression on MCF remodeling and proliferation. In summary, miR-675 targets TGFβR1 to attenuate TGFβ1-induced MCF remodeling and proliferation. We demonstrate a novel mechanism of the Smads/miR-675/TGFβR1 axis modulating TGFβ1-induced MCF remodeling and proliferation.  相似文献   

3.
4.
5.
MicroRNAs (miRNAs) are small non-coding RNAs that participate in diverse biological processes including skeletal muscle development. MiR-214 is an miRNA that is differentially expressed in porcine embryonic muscle and adult skeletal muscle, suggesting that miR-214 may be related to embryonic myogenesis. In this study, the myoblast cell line C2C12 was used for functional analysis of miR-214 in vitro. The results showed that miR-214 was expressed both in myoblasts and in myotubes and was upregulated during differentiation. After treatment with an miR-214 inhibitor and culturing in differentiation medium, myoblast differentiation was repressed, as indicated by the significant downregulation of expression of the myogenic markers myogenin and myosin heavy chain (MyHC). Interestingly, myoblast proliferation was also repressed when cells were transfected with an miR-214 inhibitor and cultured in growth medium by real-time proliferation assay and cell cycle analysis. Our results showed that miR-214 regulates both proliferation and differentiation of myoblasts depending on the conditions.  相似文献   

6.
miRNAs have been shown to be essential for normal cartilage development in the mouse. However, the role of specific miRNAs in cartilage function is unknown. Using rarely available healthy human chondrocytes (obtained from 8 to 50 year old patients), we detected a most highly abundant primary miRNA H19, whose expression was heavily dependent on cartilage master regulator SOX9. Across a range of murine tissues, expression of both H19- and H19-derived miR-675 mirrored that of cartilage-specific SOX9. miR-675 was shown to up-regulate the essential cartilage matrix component COL2A1, and overexpression of miR-675 rescued COL2A1 levels in H19- or SOX9-depleted cells. We thus provide evidence that SOX9 positively regulates COL2A1 in human articular chondrocytes via a previously unreported miR-675-dependent mechanism. This represents a novel pathway regulating cartilage matrix production and identifies miR-675 as a promising new target for cartilage repair.  相似文献   

7.
8.
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.  相似文献   

9.
H19 RNA has been characterized as an oncogenic long non-coding RNA (lncRNA) in breast and colon cancer. However, the role and function of lncRNA H19 in glioma development remain unclear. In this study, we identified that H19/miR-675 signaling was critical for glioma progression. By analyzing glioma gene expression data sets, we found increased H19 in high grade gliomas. H19 depletion via siRNA inhibited invasion in glioma cells. Further, we found H19 positively correlated with its derivate miR-675 expression and reduction of H19 inhibited miR-675 expression. Bioinformatics and luciferase reporter assays showed that miR-675 modulated Cadherin 13 expression by directly targeting the binding site within the 3′ UTR. Finally, introduction of miR-675 abrogated H19 knockdown-induced cell invasion inhibition in glioma cells. To our knowledge, it is first time to demonstrate that H19 regulates glioma development by deriving miR-675 and provide important clues for understanding the key roles of lncRNA-miRNA functional network in glioma.  相似文献   

10.
11.
12.
The PRL (phosphatase of regenerating liver) phosphatases are implicated in the control of cell proliferation and invasion. Aberrant PRL expression is associated with progression and metastasis of multiple cancers. However, the specific in vivo function of the PRLs remains elusive. Here we show that deletion of PRL2, the most ubiquitously expressed PRL family member, leads to impaired placental development and retarded growth at both embryonic and adult stages. Ablation of PRL2 inactivates Akt and blocks glycogen cell proliferation, resulting in reduced spongiotrophoblast and decidual layers in the placenta. These structural defects cause placental hypotrophy and insufficiency, leading to fetal growth retardation. We demonstrate that the tumor suppressor PTEN is elevated in PRL2-deficient placenta. Biochemical analyses indicate that PRL2 promotes Akt activation by down-regulating PTEN through the proteasome pathway. This study provides the first evidence that PRL2 is required for extra-embryonic development and associates the oncogenic properties of PRL2 with its ability to negatively regulate PTEN, thereby activating the PI3K-Akt pathway.  相似文献   

13.
MircroRNA (miRNA)是一段长度约为22个nt的小型非编码RNA,广泛存在于真核生物中,具有调节基因表达的作用。对miRNA的鉴定、功能分析和调控机理研究已成为当今生物领域的热点。miR-302/367cluster属于胚胎干细胞特异性细胞周期调控miRNAs家族成员(embryonic stem cell-specific cell cycle-regulating family of microRNAs,ESCC miRNAs),通常由5个成员miR-302a、miR-302b、miR-302c、miR-302d及miR-367组成,大多分布在脊椎动物中。研究表明,该miRNAs簇对细胞多种生理过程起重要调控作用,如人胚胎干细胞(hESCs)多能性的维持、自我更新等。本研究概述了miRNA的合成及作用机理,ESCC miRNAs促进体细胞再程序化,并总结了miR-302/367 cluster在细胞周期调控、表观遗传修饰及一些细胞信号转导途径中的作用,为采用该类miRNAs诱导体细胞再程序化为iPS细胞(Induced pluripotent stem cells)提供一定的理论基础。  相似文献   

14.
15.

Background

Novel research has suggested that altered miRNA expression in the placenta is associated with adverse pregnancy outcomes and with potentially harmful xenobiotic exposures. We hypothesized that aberrant expression of miRNA in the placenta is associated with fetal growth, a measurable phenotype resulting from a number of intrauterine factors, and one which is significantly predictive of later life outcomes.

Methodology/Principal Findings

We analyzed 107 primary, term, human placentas for expression of 6 miRNA reported to be expressed in the placenta and to regulate cell growth and development pathways: miR-16, miR-21, miR-93, miR-135b, miR-146a, and miR-182. The expression of miR-16 and miR-21 was markedly reduced in infants with the lowest birthweights (p<0.05). Logistic regression models suggested that low expression of miR-16 in the placenta predicts an over 4-fold increased odds of small for gestational age (SGA) status (p = 0.009, 95% CI = 1.42, 12.05). Moreover, having both low miR-16 and low miR-21 expression in the placenta predicts a greater increase in odds for SGA than having just low miR-16 or miR-21 expression (p<0.02), suggesting an additive effect of both of these miRNA.

Conclusions/Significance

Our study is one of the first to investigate placental miRNA expression profiles associated with birthweight and SGA status. Future research on miRNA whose expression is associated with in utero exposures and markers of fetal growth is essential for better understanding the epigenetic mechanisms underlying the developmental origins of health and disease.  相似文献   

16.
17.
The expression of neutrophil gelatinase-associated lipocalin (NGAL) is up-regulated in some cancers; therefore NGAL has potential as a tumor biomarker. Although the regulation mechanism for this is unknown, one study has shown that it is likely to involve a microRNA (miRNA). Here, we investigate the relation between miRNA expression and NGAL expression, and the role of NGAL in tumorigenesis. Using miRNA target–detecting software, we analyze the mRNA sequence of NGAL and identify a target site for microRNA-138 (miR-138) in nucleotides 25–53 of the 3′ UTR. We then analyze NGAL and miR-138 expression in three cancer cell lines originating from breast, endometrial and pancreatic carcinomas (the MCF-7, RL95-2 and AsPC-1 cell lines), respectively, using quantitative (real-time) PCR and western blot analysis. Metastasis is a critical event in cancer progression, in which malignant cell proliferation, migration and invasion increase. To determine whether miR-138-regulated NGAL expression is associated with metastasis, the proliferation and migration of the cell line are examined after miR-138 transfection. Using nude mice, we examine both the tumorigenicity of these cell lines and of miR-138-transfected cancer cells in vivo, as well as the effect of treating tumors with an antibody against NGAL. Our results show that these cancer cell lines down-regulate NGAL when miR-138 is highly expressed. Ectopic transfection of miR-138 suppresses NGAL expression and cell migration in RL95-2 and AsPC-1 cells, demonstrating that miR-138-regulated NGAL expression is associated with cell migration. Additionally, injection of the NGAL antibody diminishes NGAL-mediated tumorigenesis in nude mice, and miR-138 transfection of cancer cells reduces tumor formation. As the cell proliferation data showed that the tumor size should be regulated by NGAL-related cell growth. Taken together, our results indicate that NGAL may be a good target for cancer therapy and suggest that miR-138 acts as a tumor suppressor and may prevent metastasis.  相似文献   

18.
An increasing number of genes known to be critical for cell cycle control, differentiation, and tumor suppression have been found to impact development of the placenta. To elucidate how these genes contribute to development of embryonic and extra-embryonic lineages, we generated a transgenic mouse in which the Cre transgene is driven by placenta-specific regulatory sequences from the human CYP19 gene. Using ROSA26 conditional reporter mice, we could detect expression of the CYP19-Cre transgene throughout the extra-embryonic ectoderm and in the ectoplacental cone at embryonic day 6.5 (E6.5). By E11.5, recombination of LoxP reporter sites was detected in all derivatives of trophoblast stem cells, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. We conclude that the CYP19-Cre transgenic mouse developed here can be used in combination with conditional alleles to distinguish between embryonic and extra-embryonic gene function, and to begin to map the period of time when gene function is critical during development.  相似文献   

19.
Curcumin (CUR) shows a remarkable antitumor activity against a wide range of cancers such as glioma, but its underlying mechanism remains elusive. In this study, we aimed to explore the potential role of H19/miR-675/vitamin D receptor (VDR) in the effect of CUR against glioma. Real-time polymerase chain reaction and western-blot analysis were used to study the effect of CUR or 1,25-dihydroxyvitamin D (1,25(OH)2D3) on the expression of H19, miR-675, and VDR. In addition, the effect of H19 on VDR expression was also studied. Furthermore, the expression of H19, miR-675, and VDR between CUR-loaded nanoparticles (NPs) and NP groups was compared, and the interaction among H19, miR-675, and VDR was analyzed by in-silicon and luciferase assays. In a dose-dependent manner, CUR and 1,25(OH)2D3 both downregulated the expression of H19 and miR-675 but increased the expression of VDR. In addition, H19 evidently reduced the mRNA and protein levels of VDR. Furthermore, VDR was confirmed as a target gene of miR-675, which significantly reduced the expression of VDR. Finally, the administration of CUR evidently decreased tumor volume. CUR-loaded NP group exhibited lower levels of H19 and miR-675, while the NP group showed higher levels of VDR mRNA and protein. In summary, it is the first time that the involvement of a negative feedback loop of H19/miR-675/VDR has been demonstrated in the development of glioma. Therefore, H19 might serve as a new biomarker for the diagnosis and treatment of glioma.  相似文献   

20.
Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3′ untranslated region (3′ UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号