首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Classical mitogen-activated protein kinases (MAPKs) play a pivotal role in a variety of cellular signal transduction pathways. MAPKs are activated by phosphorylation at specific threonine and tyrosine residues catalyzed by upstream MAPK kinases (MAPKKs). Mutations of these two activation phosphorylation sites into acidic amino acids, however, do not convert MAPKs into constitutively active forms. Here, we report an approach to make a molecule with constitutive MAPK activity. The nuclear export signal-disrupted, constitutively active MAPKK was fused to the N-terminal end of wild-type MAPK. When the resulting fusion protein was expressed in Escherichia coli, the MAPK moiety became phosphorylated and the fusion protein was constitutively active as MAPK. Moreover, when expressed in mammalian cultured cells, the fusion protein was also activated as MAPK and was able to induce marked morphological changes in NIH-3T3 cells. These results suggest that the fusion protein can work as constitutively active MAPK and that this approach may be applicable to other members of the MAPK family to make constitutively active forms.  相似文献   

2.
In Arabidopsis, three genes (AHK2, AHK3 and AHK4/CRE1) encode histidine kinases (His-kinases), which serve as cytokinin receptors. To understand how the external cytokinin signal activates the His-kinase across the cell membrane, we exploited the power of microbial genetics to isolate several AHK4 mutants that function independently of cytokinin in both prokaryotic and eukaryotic assay systems. In each mutant, a single amino acid substitution within the second membrane-spanning segment, or within the region around the phosphorylation His site, renders the His-kinase constitutively active. These mutant receptors appear to have a 'locked-on' conformation, even in the absence of stimulus. We discuss the implications of these data for the structure and function of the cytokinin receptor His-kinases in plants.  相似文献   

3.
We identified a novel alternative splicing event that constitutively produces a truncated active form of human sterol regulatory element-binding protein 1 (SREBP-1). A cDNA of this splicing variant (named SREBP-1Δ) contains a translational stop codon-encoding exon sequence between exons 7 and 8. It produces SREBP-1aΔ (470 a.a.) and SREBP-1cΔ (446 a.a.) proteins that lack transmembrane and C-terminal regulatory sequences necessary for localization of SREBP-1 to the endoplasmic reticulum. A luciferase reporter assay showed that SREBP-1aΔ and SREBP-1cΔ transactivated lipogenic gene promoters to the same extent as that induced by N-terminal active fragments of SREBP-1a and SREBP-1c, respectively. SREBP-1Δ mRNA is expressed in human cell lines as well as adipose and liver tissues. Expression levels ranged from 5% to 16% of total SREBP-1 expression. The ratio of SREBP-1Δ expression to total SREBP-1 expression in HepG2 cells was not affected by either insulin or high glucose treatment.  相似文献   

4.
The cytosolic domain of the beta-amyloid precursor protein APP interacts with three PTB (phosphotyrosine binding domain)-containing adaptor proteins, Fe65, X11, and mDab1. Through these adaptors, other molecules can be recruited at the cytodomain of APP; one of them is Mena, that binds to the WW domain (a protein module with two conserved tryptophans) of Fe65. The enabled and disabled genes of Drosophila, homologues of the mammalian Mena and mDab1 genes, respectively, are genetic modulators of the phenotype observed in flies null for the Abl tyrosine kinase gene. The involvement of Mena and mDab1 in the APP-centered protein-protein interaction network suggests the possibility that Abl plays a role in APP biology. We show that Fe65, through its WW domain, binds in vitro and in vivo the active form of Abl. Furthermore, in cells expressing the active form of Abl, APP is tyrosine-phosphorylated. Phosphopeptide analysis and site-directed mutagenesis support the hypothesis that Tyr(682) of APP(695) is the target of this phosphorylation. Co-immunoprecipitation experiments demonstrate that active Abl and tyrosine-phosphorylated APP also form a stable complex, which could result from the interaction of the pYENP motif of the APP cytodomain with the SH2 domain of Abl. These results suggest that Abl, Mena, and mDab1 are involved in a common molecular machinery and that APP can play a role in tyrosine kinase-mediated signaling.  相似文献   

5.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

6.
Mitogen-activated protein (MAP) kinases have a central role in several biological functions, including cell adhesion and spreading, chemotaxis, cell cycle progression, differentiation, and apoptosis. Extracellular signal-regulated kinase 8 (Erk8) is a large MAP kinase whose activity is controlled by serum and the c-Src non-receptor tyrosine kinase. Here, we show that RET/PTC3, an activated form of the RET proto-oncogene, was able to activate Erk8, and we demonstrate that such MAP kinase participated in RET/PTC3-dependent stimulation of the c-jun promoter. By using RET/PTC3 molecules mutated in specific tyrosine autophosphorylation sites, we characterized Tyr(981), a known binding site for c-Src, as a major determinant of RET/PTC3-induced Erk8 activation, although, surprisingly, the underlying mechanism did not strictly depend on the activity of Src. In contrast, we present evidence that RET/PTC3 acts on Erk8 through Tyr(981)-mediated activation of c-Abl. Furthermore, we localized the region responsible for the modulation of Erk8 activity by the RET/PTC3 and Abl oncogenes in the Erk8 C-terminal domain. Altogether, these results support a role for Erk8 as a novel effector of RET/PTC3 and, therefore, RET biological functions.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) is activated by many kinds of stimuli and plays an important role in integrating signal transduction cascades. MAPK is present abundantly in brain, where we have studied its association with microtubules. Immunofluorescence of primary hippocampal neurons revealed that MAPK staining co-localized with microtubules and biochemical analyses showed that MAPK co-purified with microtubules. Approximately 4% of MAPK in cytosolic extracts was associated with microtubules, where it was associated with both tubulin and microtubule-associated proteins (MAPs) fractions. Further fractionation of MAPs suggested that a portion of MAPK is associated with MAP2. An association with MAP2 was also demonstrated by co-immunoprecipitation and in vitro binding experiments. A similar association was shown for the juvenile MAP2 isoform, MAP2C. The pool of MAPK associated with microtubules had a higher activity relative to the nonassociated pool in both brain and proliferating PC12 cells. Although MAPK was activated by nerve growth factor in PC12 cells, the activity of microtubule-associated MAPK did not further increase. These results raise the possibility that microtubule-associated MAPK operates through constitutive phosphorylation activity to regulate microtubule function in neurons.  相似文献   

8.
The protein kinase C (PKC) family is the most prominent target of tumor-promoting phorbol esters. For the PKCε isozyme, different intracellular localizations and oncogenic potential in several but not all experimental systems have been reported. To obtain information about PKCε-signaling, we investigated the effects of constitutively active rat PKCε (PKCεA/E, alanine 159 is replaced by glutamic acid) in HeLa cells in a doxycycline-inducible vector. Upon induction of PKCεA/E expression by doxycycline, the major part of PKCεA/E was localized to the Golgi. This led (i) to phosphorylations of PKCεS729, Elk-1S383, PDK1S241 and RbS807/S811, (ii) to elevated expression of receptor of activated C kinase 2 (RACK2) after 12 h, and (iii) increased colony formation in soft agar, increased cell migration and invasion, but not to decreased doubling time. Following induction of PKCεA/E-expression by doxycycline for 24 h and additional short-term treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), PKCεA/E translocated to the plasma membrane and increased phosphorylation of MARCKSS152/156. Treatment with doxycycline/TPA or TPA alone increased phosphorylations of Elk-1S383, PDK1S241, RbS807/S811, PKCδT505, p38MAPKT180/Y182, MEK1/2S217/S221 and ERK2T185/T187. MARCKS was not phosphorylated after treatment with TPA alone, demonstrating that in this system it is phosphorylated only by PKCε localized to the plasma membrane but not by PKCα or δ, the other TPA-responsive PKC isozymes in HeLa cells. These results demonstrate that PKCε can induce distinctly different signaling from the Golgi and from the plasma membrane.  相似文献   

9.
The protein kinase p90(Rsk) has previously been implicated as a key target of the MAPK pathway during M phase of meiosis II in Xenopus oocytes. To determine whether Rsk is a mediator of MAPK for stimulation of the G(2)/M transition early in meiosis I, we sought to generate a form of Rsk that would be constitutively active in resting, G(2) phase oocytes. Initial studies revealed that an N-terminal truncation of 43 amino acids conferred enhanced specific activity on the enzyme in G(2) phase, and stability was highest if the C terminus was not truncated. The full-length enzyme is known to be activated by phosphorylation at five sites. Two of these sites and flanking residues were replaced with either aspartic or glutamic acid, and Tyr(699) was mutated to alanine. The resulting construct, termed fully activated (FA) Rsk, had constitutive activity in G(2) phase, with a specific activity equivalent to that of wild type Rsk in M phase. In eight independent experiments approximately 45% of oocytes expressing FA-Rsk underwent germinal vesicle breakdown (GVBD, the G(2)/M transition) in the absence of progesterone, and this effect could be observed even in the presence of the MAPK kinase inhibitor U0126. Moreover, the specific activity of FA-Rsk in vivo was unaffected by U0126. In oocytes that did not undergo GVBD with FA-Rsk expression, subsequent treatment with progesterone resulted in a very rapid rate of GVBD even in the presence of U0126 to inhibit the endogenous MAPK/Rsk pathway. These results indicate that Rsk is the mediator of MAPK effects for the G(2)/M transition in meiosis I and in a subpopulation of oocytes Rsk is sufficient to trigger the G(2)/M transition.  相似文献   

10.
During mitosis the Xenopus polo-like kinase 1 (Plx1) plays key roles in the activation of Cdc25C, in spindle assembly, and in cyclin B degradation. Previous work has shown that the activation of Plx1 requires phosphorylation on serine and threonine residues. In the present work, we demonstrate that replacement of Ser-128 or Thr-201 with a negatively charged aspartic acid residue (S128D or T201D) elevates Plx1 activity severalfold and that replacement of both Ser-128 and Thr-201 with Asp residues (S128D/T201D) increases Plx1 activity approximately 40-fold. Microinjection of mRNA encoding S128D/T201D Plx1 into Xenopus oocytes induced directly the activation of both Cdc25C and cyclin B-Cdc2. In egg extracts T201D Plx1 delayed the timing of deactivation of Cdc25C during exit from M phase and accelerated Cdc25C activation during entry into M phase. This supports the concept that Plx1 is a "trigger" kinase for the activation of Cdc25C during the G(2)/M transition. In addition, during anaphase T201D Plx1 reduced preferentially the degradation of cyclin B2 and delayed the reduction in Cdc2 histone H1 kinase activity. In early embryos S128D/T201D Plx1 resulted in arrest of cleavage and formation of multiple interphase nuclei. Consistent with these results, Plx1 was found to be localized on centrosomes at prophase, on spindles at metaphase, and at the midbody during cytokinesis. These results demonstrate that in Xenopus laevis activation of Plx1 is sufficient for the activation of Cdc25C at the initiation of mitosis and that inactivation of Plx1 is required for complete degradation of cyclin B2 after anaphase and completion of cytokinesis.  相似文献   

11.
Both beta- and gammaherpesviruses encode G protein-coupled receptors (GPCRs) with unique pharmacological phenotypes and important biological functions. An example is ORF74, the gamma2-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded GPCR, which is highly constitutively active and considered the key oncogene in Kaposi's sarcoma pathogenesis. In contrast, the current annotation of the Epstein-Barr virus (EBV) genome does not reveal any GPCR homolog encoded by this human oncogenic gamma1-herpesvirus. However, by employing bioinformatics, we recognized that the previously established EBV open reading frame BILF1 indeed encodes a GPCR. Additionally, BILF1 is a member of a new family of related GPCRs exclusively encoded by gamma1-herpesviruses. Expression of hemagglutinin-tagged BILF1 in the HEK293 epithelial cell line revealed that BILF1 is expressed as an approximately 50-kDa glycosylated protein. Immunocytochemistry and confocal microscopy revealed that BILF1 localizes predominantly to the plasma membrane, similar to the localization of KSHV ORF74. Using chimeric G proteins, we found that human and rhesus EBV-encoded BILF1 are highly potent constitutively active receptors, activating Galphai. Furthermore, BILF1 is able to inhibit forskolin-triggered CREB activation via stimulation of endogenous G proteins in a pertussis toxin-sensitive manner, verifying that BILF1 signals constitutively through Galphai. We suggest that EBV may use BILF1 to regulate Galphai-activated pathways during viral lytic replication, thereby affecting disease progression.  相似文献   

12.
Signal transduction systems comprising histidine kinases are suggested as new molecular targets of antibiotics. The important human fungal pathogen Candida albicans possesses three histidine kinases, one of which is the type III histidine kinase CaNik1, which activates the MAP kinase Hog1. We established a screening system for inhibitors of this class of histidine kinases by functional expression of the CaNIK1 gene in S. cerevisiae. This transformant was susceptible to fungicides to which the wild type strain was resistant, such as fludioxonil and ambruticin. Growth inhibition correlated with phosphorylation of Hog1 and was dependent on an intact Hog1 pathway. At the N-terminus the histidine kinase CaNik1 has four amino acid repeats of 92 amino acids each and one truncated repeat of 72 amino acids. Within these repeats we identified 9 HAMP domains with a paired structure. We constructed mutants in which one or two pairs of these domains were deleted. S. cerevisiae transformants expressing the full-length CaNIK1 showed the highest sensitivity to the fungicides, any truncation reduced the susceptibility of the transformants to the fungicides. This indicates that the HAMP domains are decisive for the mode of action of the antifungal compounds.  相似文献   

13.
Calcineurin is a calcium/calmodulin-dependent phosphatase whose activity is required for the induction of T cell lymphokine production and proliferation. Although its specific role in T cell development is less well defined, studies with the immunosuppressive drugs cyclosporin A and FK-506 suggest that it is involved in both positive and negative selection of immature thymocytes. To more completely characterize a role for calcineurin in T cell development in vivo, we have generated transgenic mice that express an activated form of this enzyme in thymocytes and peripheral T cells. We find that the transgene causes a block in early thymic development, resulting in a reduction in the steady-state number of CD4 and CD8 double positives, but not on the number of mature T cells. We also find that thymocytes and mature T cells expressing this transgene are more sensitive to signals through their TCR. In thymocytes this sensitivity difference is manifested as an increase in positive selection, although negative selection seems to remain unaffected. Therefore, these studies confirm and extend past reports that suggested a role for calcineurin in thymic development and selection.  相似文献   

14.
An active ribosomal protein S6 kinase has been highly purified from the membranes of rabbit reticulocytes by chromatography of the Triton X-100 extract on DEAE-cellulose, SP-Sepharose Fast Flow, and by FPLC on Mono Q and Superose-12. The S6 kinase elutes around 40 000 daltons upon gel filtration on Superose-12 or Sephacryl S-200. It has a subunit molecular weight of 40–43 kDa as determined by protein kinase activity following denaturation/renaturation in SDS-polyacrylamide gels containing S6 peptide. It also phosphorylates translational initiation factors eIF-2 and eIF-4F, glycogen synthase, histone 1, histone 2B, myelin basic protein, but not prolactin, skeletal myosin light chain, histone 4, tubulin, and casein. Apparent Km values have been determined to be 15 μM for ATP, 1.2 μM for S6 and 10 μM for S6 peptide. Two-dimensional tryptic phosphopeptide mapping shows the same sites on S6 are phosphorylated as those identified previously with proteolytically activated multipotential S6 kinase from rabbit reticulocytes, previously denoted as protease activated kinase II. Examination of relative rates of phosphorylation and kinetic constants of synthetic peptides based on previously identified phosphorylation sites, indicates a minimum substrate recognition sequence to be arginine at the n − 3 position. Based on these characteristics, including molecular weight and an expanded substrate specificity, the membrane S6 kinase can be distinguished from the p90 (Type I) and p70 (Type II) S6 kinases, and from protein kinase C and the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

15.
Phosphorylation of Thr(308) in the activation loop and Ser(473) at the carboxyl terminus is essential for protein kinase B (PKB/Akt) activation. However, the biochemical mechanism of the phosphorylation remains to be characterized. Here we show that expression of a constitutively active mutant of mouse 3-phosphoinositide-dependent protein kinase-1 (PDK1(A280V)) in Chinese hamster ovary cells overexpressing the insulin receptor was sufficient to induce PKB phosphorylation at Thr(308) to approximately the same extent as insulin stimulation. Phosphorylation of PKB by PDK1(A280V) was not affected by treatment of cells with inhibitors of phosphatidylinositol 3-kinase or by deletion of the pleckstrin homology (PH) domain of PKB. C(2)-ceramide, a cell-permeable, indirect inhibitor of PKB phosphorylation, did not inhibit PDK1(A280V)-catalyzed PKB phosphorylation in cells and had no effect on PDK1 activity in vitro. On the other hand, co-expression of full-length protein kinase C-related kinase-1 (PRK1/PKN) or 2 (PRK2) inhibited PDK1(A280V)-mediated PKB phosphorylation. Replacing alanine at position 280 with valine or deletion of the PH domain enhanced PDK1 autophosphorylation in vitro. However, deletion of the PH domain of PDK1(A280V) significantly reduced PDK1(A280V)-mediated phosphorylation of PKB in cells. In resting cells, PDK1(A280V) localized in the cytosol and at the plasma membrane. However, PDK1(A280V) lacking the PH domain localized predominantly in the cytosol. Taken together, our findings suggest that the wild-type PDK1 may not be constitutively active in cells. In addition, activation of PDK1 is sufficient to phosphorylate PKB at Thr(308) in the cytosol. Furthermore, the PH domain of PDK1 may play both positive and negative roles in regulating the in vivo function of the enzyme. Finally, unlike the carboxyl-terminal fragment of PRK2, which has been shown to bind PDK1 and allow the enzyme to phosphorylate PKB at both Thr(308) and Ser(473), full-length PRK2 and its related kinase PRK1/PKN may both play negative roles in PKB-mediated downstream biological events.  相似文献   

16.
17.
Subtilin is a lanthionine-containing peptide antibiotic (lantibiotic) which is produced by Bacillus subtilis ATCC 6633. Upstream from the structural gene of subtilin, spaS, three genes (spaB, spaT, and spaC) which are involved in the biosynthesis of subtilin have been identified (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992). By using a hybridization probe specific for these genes, the DNA region downstream from spaS was isolated. Further subcloning revealed a 5.2-kb KpnI-HindIII fragment on which two open reading frames, spaR and spaK, were identified approximately 3 kb downstream from spaS. The spaR gene encodes an open reading frame of 220 amino acids with a predicted molecular mass of 25.6 kDa. SpaR shows 35% similarity to positive regulatory factors OmpR and PhoB. The spaK gene encodes an open reading frame of 387 amino acids with a predicted molecular mass of 44.6 kDa and was highly similar to histidine kinases previously described (PhoM, PhoR, and NtrB). Hydrophobicity blots suggested two membrane-spanning regions. Thus, spaR and spaK belong to a recently identified family of environmentally responsive regulators. These results indicated a regulatory function of spaR and spaK in subtilin biosynthesis. Indeed, batch culture experiments confirmed the regulation of subtilin biosynthesis starting in the mid-logarithmic growth phase and reaching its maximum in the early stationary growth phase. Gene deletions within spaR and spaK yielded subtilin-negative mutants, which confirms that subtilin biosynthesis is under the control of a two-component regulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We used site-directed mutagenesis to engineer two constitutively active forms of the alpha subunit of a rice heterotrimeric G protein. The recombinant proteins produced from these novel cDNAs had GTP-binding activity but no GTPase activity. A chimeric gene for a constitutively active form of the alpha subunit was introduced into the rice mutant d1, which is defective for the alpha-subunit gene. All the transformants essentially showed a wild-type phenotype compared with normal cultivars, although seed sizes were substantially increased and internode lengths also showed some increase.  相似文献   

19.
20.
Using the cre-loxP recombination system, we generated a line of mice expressing a constitutively active catalytic subunit of Protein Kinase A (PKA) in a temporally and spatially regulated fashion. In the absence of cre recombinase the modified catalytic subunit allele is functionally silent, but after recombination the mutant allele is expressed, resulting in enhanced PKA effects at basal cAMP levels. Mice expressing the modified protein in hepatocytes using albumin-cre transgenics show defects in glucose homeostasis, glycogen storage, fructose 2,6-bisphosphate levels, and induction of glucokinase mRNA during feeding. Similar to animals lacking glucokinase in the liver (Postic et al.: J Biol Chem 274:305-315, 1999), these mice also have defects in glucose-stimulated insulin secretion, a hallmark of Type II diabetes. The widespread expression of PKA and the involvement of this kinase in a myriad of signaling pathways suggest that these animals will provide critical tools for the study of PKA function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号