首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is activated following phosphorylation by the cAMP-dependent protein kinase (largely by decreasing the Km of the enzyme for its pterin co-substrate). Following its phosphorylation activation in rat striatal homogenates, we find that tyrosine hydroxylase is inactivated by two distinct processes. Because cAMP is hydrolyzed in crude extracts by a phospho-diesterase, cAMP-dependent protein kinase activity declines following a single addition of cAMP. When tyrosine hydroxylase is activated under these transient phosphorylation conditions, inactivation is accompanied by a reversion of the activated kinetic form (low apparent Km for pterin co-substrate, ≤0.2 mM) to the kinetic form characteristic of the untreated enzyme (high apparent Km, ≥1.0 mM). This inactivation is readily reversed by the subsequent addition of cAMP. When striatal tyrosine hydroxylase is activated under constant phosphorylation conditions (incubated with purified cAMP-dependent protein kinase catalytic subunit), however, it is also inactivated. This second inactivation process is irreversible and is characterized kinetically by a decreasing apparent Vmax with no change in the low apparent Km for pterin co-substrate (0.2 mM). The latter inactivation process is greatly attenuated by gel filtration which resolves a low-molecular-weight inactivating factor(s) from the tyrosine hydroxylase. These results are consistent with a regulatory mechanism for tyrosine hydroxylase involving two processes: in the first case, reversible phosphorylaton and dephos-phorylation and, in the second case, an irreversible loss of activity of the phosphorylated form of tyrosine hydroxylase.  相似文献   

2.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, catalyzes the conversion of tyrosine to DOPA, Cyclic AMP-dependent protein phosphorylation conditions alter tyrosine hydroxylase activity in rat striatal homogenates. In agreement with other laboratories, we find that short-term pre-incubation (3 min) of extracts under phosphorylating conditions (Mg . ATP, cAMP) increases enzyme activity two- to tenfold over control as measured during a subsequent 15-min assay. We now report that preincubation under phosphorylating conditions for longer periods (30 min) results in a loss of activity to levels equal to or below that of the control enzyme. Addition of purified bovine brain protein kinase catalytic subunit and Mg . ATP enhances activation and increases the rate of inactivation. To demonstrate that inactivation is not associated with proteolytic degradation or irreversible denaturation, the inactivated form of the enzyme can be reactivated. The protein kinase inhibitor protein decreases the activation process and prevents inactivation of the enzyme to below control values. The sedimentation coefficient is not changed by phosphorylation conditions (S = 8.8 +/- 0.1). Although the apparent Km of the enzyme for the 6-methyltetrahydropterine (6-MPH4) cofactor is reduced (0.86 mM, control; 0.32 mM, activated), it is also reduced in the inactivated form (0.38 mM). The Ki for dopamine is increased from 4.5 microM for the control to 28 microM for the activated enzyme, whereas the inactivated form of the enzyme exhibits a Ki of 10 microM. Removal of catecholamines by gel filtration fails to alter activity and the apparent cofactor Km. Moreover, both the activated and the inactivated states persist following gel filtration. It therefore appears that the activation-inactivation process is not mediated solely by the modulation of enzyme feedback inhibition or changes in the Km for 6-MPH4. We also describe a coupled decarboxylase assay in which labeled dopamine is resolved from the precursors tyrosine and DOPA by low-voltage paper electrophoresis.  相似文献   

3.
We trained rats to circle for a sucrose water reward and found that this behavior is associated with a unilateral increase in the activity of caudate tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis. The increase in tyrosine hydroxylase activity occurs in caudate contralateral to the circling direction and the change is transient, increasing during the first 20 min of circling but then plateauing and falling as turning slows. Enhanced synthetic capacity is followed by increases in the contents of dopamine and dihydroxyphenylacetic acid in the contralateral caudate nucleus. These observations are the first evidence for specific activation of a neurotransmitter synthetic enzyme during voluntary motor behavior.  相似文献   

4.
The administration of nicotine activates tyrosine hydroxylase in the rat adrenal gland. This activation is apparently maximal 25 min after a single subcutaneous injection of nicotine at 2.3 mg/kg. Repeated injections of nicotine (seven injections once every 30 min) are associated with a persistent activation of adrenal tyrosine hydroxylase for at least 3 h. The nicotinic receptor antagonist hexamethonium does not significantly inhibit the nicotine-mediated activation of tyrosine hydroxylase in innervated adrenal glands. However, hexamethonium completely blocks the activation of adrenal tyrosine hydroxylase by nicotine in denervated adrenal glands. Furthermore, even though a single injection of nicotine activates tyrosine hydroxylase in both innervated and denervated adrenal glands, repeated injections of nicotine do not activate tyrosine hydroxylase in denervated adrenal glands. Our results suggest that the systemic administration of nicotine activates adrenal tyrosine hydroxylase by two mechanisms: (1) via direct interaction with adrenal chromaffin cell nicotinic receptors; and (2) via stimulation of the CNS leading to the release from the splanchnic nerve of substances that interact with adrenal chromaffin cell receptors other than the nicotinic receptor.  相似文献   

5.
Mild electric footshock resulted in activation of tyrosine hydroxylase (TH) in prefrontal cortex of mice and rats. In mice, the activation was also observed following restraint. Shock-evoked activation of prefrontal cortex TH was characterized by a decrease of apparent Km for the pterin cofactor 6-methyl-5,6,7,8-tetrahydropterin and an increase of Vmax. Activation of prefrontal cortical TH was also demonstrated in vitro following preincubation under conditions that activate cyclic AMP-dependent protein kinase. Treatment of mice with the noradrenergic neurotoxin N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4) caused a 70% decrease in prefrontal cortex norepinephrine levels but had no significant effect on the activity of TH in that brain region. Footshock resulted in the activation of prefrontal cortex TH of DSP-4-treated mice, suggesting that shock-evoked activation of the enzyme occurs in terminals of mesocortical 3,4-dihydroxyphenylethylamine neurons.  相似文献   

6.
Abstract: Tyrosine hydroxylase in rat retina is activated in vivo as a consequence of photic stimulation. Tyrosine hydroxylase in crude extracts of dark-adapted retinas is activated in vitro by incubation under conditions that stimulate protein phosphorylation by cyclic AMP-dependent protein kinase. Comparison of the activations of the enzyme by photic stimulation in vivo and protein phosphorylation in vitro demonstrated several similarities. Both treatments decreased the apparent K m of the enzyme for the synthetic pterin cofactor 6MPH4. Both treatments also produced the same change in the relationships of tyrosine hydroxylase activity to assay pH. When retinal extracts containing tyrosine hydroxylase activated either in vivo by photic stimulation or in vitro by protein phosphorylation were incubated at 25°C, the enzyme was inactivated in a time-dependent manner. The inactivation of the enzyme following both activation in vivo and activation in vitro was partially inhibited by sodium pyrophosphate, an inhibitor of phosphoprotein phosphatase. In addition to these similarities, the activation of tyrosine hydroxylase in vivo by photic stimulation was not additive to the activation in vitro by protein phosphorylation. These data indicate that the mechanism for the activation of tyrosine hydroxylase that occurs as a consequence of light-induced increases of neuronal activity is similar to the mechanism for activation of the enzyme in vitro by protein phosphorylation. This observation suggests that the activation of retinal tyrosine hydroxylase in vivo may be mediated by phosphorylation of tyrosine hydroxylase or some effector molecule associated with the enzyme.  相似文献   

7.
Rapid Activation of Tyrosine Hydroxylase in Response to Nerve Growth Factor   总被引:7,自引:3,他引:7  
Abstract: Nerve growth factor protein (NGF) was found to rapidly promote the activation of tyrosine hydroxylase in cultured rat PC 12 pheochromocytoma cells. PC 12 cultures were exposed to NGF for periods of less than 1 h and the soluble contents of homogenates prepared from the cells were assayed for tyrosine hydroxylase activity. Under these conditions, the specific enzymatic activity was increased by 60 ± 10% (n = 13) in comparison with that in untreated sister cultures. The increase was half maximal by 2–5 min of exposure and at NGF concentrations of about 10 ng/ml (0.36 n M ). Antiserum against NGF blocked the effect. Tyrosine hydroxylase activity could also be rapidly increased by NGF in cultures of PC12 cells that had been treated with the factor for several weeks in order to produce a neuron-like phenotype. This was achieved by withdrawing NGF for about 4 h and then readding it for 30 min. The NGF-induced increase of tyrosine hydroxylase activity in PC12 cultures was not affected by inhibition of protein synthesis and therefore appeared to be due to activation of the enzyme. Kinetic experiments revealed that NGF brought about no change in the apparent Km of the enzyme for tyrosine or for co-factor (6-methyltetrahydropteridine), but that it did significantly increase the apparent maximum specific activity of the enzyme. These observations suggest that NGF (perhaps released by target organs) could promote a rapid and local enhancement of noradrenergic transmission in the sympathetic nervous system.  相似文献   

8.
9.
Previous studies have shown that insulin-like growth factor-I (IGF-I) enhances secretagogue-stimulated Ca2+ uptake and catecholamine release in bovine chromaffin cells. This report describes the effect of IGF-I on the activity of tyrosine hydroxylase (tyrosine 3-monooxygenase, EC 1.14.16.2), the major regulatory enzyme in the pathway of catecholamine biosynthesis. Tyrosine hydroxylase activity was assayed by measuring 3,4-dihydroxyphenylalanine (Dopa) accumulation in the presence of brocresine, an inhibitor of Dopa decarboxylase. Chromaffin cells cultured in serum-free medium produced approximately 40% less Dopa when stimulated by 55 mM K+ than did cells that had been cultured in the presence of serum. Incubation of cells for 3 days in serum-free medium containing 10 nM IGF-I restored high K(+)-stimulated Dopa accumulation to a level comparable to that seen in cells cultured continuously in serum-containing medium. In eight experiments, IGF-I increased high K(+)-stimulated Dopa accumulation (expressed as picomoles per minute per milligram of protein) by 96 +/- 13%. IGF-I increased the protein content of chromaffin cells by approximately 30%; consequently, its effect on tyrosine hydroxylase activity was even greater when Dopa synthesis was expressed as picomoles per minute per 10(7) cells. IGF-I also enhanced the rate of Dopa accumulation in cells stimulated by dimethylphenylpiperazinium, 8-bromo-cyclic AMP, phorbol 12,13-dibutyrate, or Ba2+. The effect of IGF-I on high K(+)-stimulated tyrosine hydroxylase activity was measurable when enzyme activity was assayed in vitro, suggesting that this effect was due to a stable modification of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A peptide corresponding to position 32-47 in tyrosine hydroxylase was synthesized (TH-16) and polyclonal antibodies against this peptide were raised in rabbits (anti-TH-16). The effects of anti-TH-16 on modulation of tyrosine hydroxylase activity were investigated. Anti-TH-16 enhanced the enzymatic activity in a concentration-dependent manner, and the antigen TH-16 inhibited the stimulatory activity of the antiserum in a concentration-dependent manner. The activated enzyme had a lower Km app for the cofactor 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropterin and a higher Vmax app than the nonactivated enzyme. Anti-TH-16 was characterized further by its ability to immunoprecipitate the enzyme activity by labeling tyrosine hydroxylase after Western blotting and by immunohistochemical labeling of catecholaminergic neurons. Anti-TH-16 did not block activation of tyrosine hydroxylase by phosphorylation catalyzed by cyclic AMP-dependent protein kinase. Exposure of the enzyme to anti-TH-16 and subsequent phosphorylation of the enzyme resulted in a greater activation of the enzyme than the sum of activation produced by these two treatments separately. However, the activation was less than additive when the enzyme was first phosphorylated and subsequently exposed to anti-TH-16. The present study demonstrates the utility of anti-TH-16 in investigating the molecular aspects of the enzyme activation.  相似文献   

11.
Tryptic digestion of tyrosine hydroxylase (TH) isolated from rat adrenal glands labeled with 32Pi produced five phosphopeptides. Based on the correspondence of these phosphopeptides with those identified in TH from rat pheochromocytoma cells, four phosphorylation sites (Ser8, Ser19, Ser31, and Ser40) were inferred. Field stimulation of the splanchnic nerves at either 1 or 10 Hz (300 pulses) increased 32P incorporation into TH. At 10 Hz, the phosphorylation of Ser19 and Ser40 was increased, whereas at 1 Hz, Ser19, Ser31, and Ser40 phosphorylation was increased. Stimulation at either 1 or 10 Hz also increased the catalytic activity of TH, as measured in vitro (pH 7.2) at either 30 or 300 microM tetrahydrobiopterin. Nicotine (3 microM, 3 min) increased Ser19 phosphorylation, vasoactive intestinal polypeptide (10 microM, 3 min) increased Ser40 phosphorylation, and muscarine (100 microM, 3 min) increased TH phosphorylation primarily at Ser19 and Ser31. Vasoactive intestinal polypeptide, but not nicotine or muscarine, mimicked the effects of field stimulation on TH activity. Thus, the regulation of rat adrenal medullary TH phosphorylation by nerve impulses is mediated by multiple first and second messenger systems, as previously shown for catecholamine secretion. However, different sets of second messengers are involved in the two processes. The action of vasoactive intestinal polypeptide as a secretagogue involves the mobilization of intracellular calcium, whereas its effects on TH phosphorylation are mediated by cyclic AMP. This latter effect of vasoactive intestinal polypeptide and the consequent increase in Ser40 phosphorylation appear to be responsible for the rapid activation of TH by splanchnic nerve stimulation.  相似文献   

12.
The possible control of tyrosine hydroxylase (TH) activity by dopaminergic receptor-dependent mechanisms was investigated using rat striatal slices or synaptosomes incubated in the presence of various 3,4-dihydroxyphenylethylamine (dopamine or DA) agonists and antagonists. Under "normal" conditions (4.8 mM K+ in the incubating medium), the DA agonists apomorphine, 6,7-dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99), 7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT), Trans-(-)-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-2H-pyrazolo-3,4- quinoline, and 3-(3-hydroxyphenyl)-N-n-propylpiperidine decreased TH activity in soluble extracts of incubated tissues. In the case of the catechol-containing drugs apomorphine and TL-99, this effect was partly due to a direct inhibition of the enzyme, but in all other cases it appeared to depend on the stimulation of presynaptic DA autoreceptors. No effect of DA antagonists was detected on TH activity under "normal" conditions. In contrast, when tissues were incubated in a K+ -enriched (60 mM) medium, (-)-sulpiride and other DA antagonists enhanced TH activation due to depolarization whereas DA agonists were ineffective. Because (-)-sulpiride also increased the enzyme activity in striatal slices exposed to drugs inducing release of DA, such as veratridine and d-amphetamine, it is concluded that the stimulating effect of the DA antagonist resulted in fact from the blockade of the negative control of TH normally triggered by endogenous DA acting on presynaptic autoreceptors. In contrast to TH activation due to K+ -induced depolarization, the activation evoked by tissue incubation with dibutyryl cyclic AMP was unaffected by the typical agonist 7-OH-DPAT or the antagonist (-)-sulpiride. This would suggest that TH control via presynaptic DA autoreceptors normally concerns possible modulations of the cyclic AMP-dependent phosphorylation of the enzyme.  相似文献   

13.
The primary pathological hallmark of Parkinson disease (PD) is the profound loss of dopaminergic neurons in the substantia nigra pars compacta. To facilitate the understanding of the underling mechanism of PD, several zebrafish PD models have been generated to recapitulate the characteristics of dopaminergic (DA) neuron loss. In zebrafish studies, tyrosine hydroxylase 1 (th1) has been frequently used as a molecular marker of DA neurons. However, th1 also labels norepinephrine and epinephrine neurons. Recently, a homologue of th1, named tyrosine hydroxylase 2 (th2), was identified based on the sequence homology and subsequently used as a novel marker of DA neurons. In this study, we present evidence that th2 co-localizes with serotonin in the ventral diencephalon and caudal hypothalamus in zebrafish embryos. In addition, knockdown of th2 reduces the level of serotonin in the corresponding th2-positive neurons. This phenotype can be rescued by both zebrafish th2 and mouse tryptophan hydroxylase 1 (Tph1) mRNA as well as by 5-hydroxytryptophan, the product of tryptophan hydroxylase. Moreover, the purified Th2 protein has tryptophan hydroxylase activity comparable with that of the mouse TPH1 protein in vitro. Based on these in vivo and in vitro results, we conclude that th2 is a gene encoding for tryptophan hydroxylase and should be used as a marker gene of serotonergic neurons.  相似文献   

14.
We have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phosphorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [3H]tyrosine to [3H]dihydroxyphenylalanine ([3H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K+ and Ba2+, stimulated phosphorylation of tyrosine hydroxylase and [3H]DOPA production. The effects of nicotinic stimulation and elevated K+ on tyrosine hydroxylase phosphorylation and [3H]DOPA production were Ca2+-dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [3H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca2+-dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.  相似文献   

15.
Both dimethylphenylpiperazinium (DMPP), a nicotinic agonist, and bethanechol, a muscarinic agonist, increase 3,4-dihydroxyphenylalanine (DOPA) synthesis in the superior cervical ganglion of the rat. DMPP causes approximately a fivefold increase in DOPA accumulation in intact ganglia whereas bethanechol causes about a two-fold increase in DOPA accumulation. These effects are additive with each other and with the increase in DOPA accumulation produced by 8-bromo cyclic AMP. The action of DMPP is dependent on extracellular Ca2+ while the actions of bethanechol and 8-bromo cyclic AMP are not dependent on extracellular Ca2+. Cholinergic agonists and cyclic nucleotides produce a stable activation of tyrosine hydroxylase (TH) in the ganglion. The activation of TH by nicotinic and muscarinic agonists can be detected after 5 min of incubation of the ganglia with these agents. The nicotinic response disappears after 30 min of incubation, whereas the muscarinic response persists for at least 30 min. The Ca2+ dependence of the TH activation produced by these agents is similar to the Ca2+ dependence of their effects on DOPA accumulation in intact ganglia. These data are consistent with the hypothesis that nicotinic agonists, muscarinic agonists, and cyclic AMP analogues increase TH activity by three distinct mechanisms. The activation of TH presumably underlies the increase in DOPA synthesis produced by these agents.  相似文献   

16.
Abstract: The kinetic properties of soluble tyrosine hydroxylase from rat striatum and the activation of the enzyme by the polyanion heparin were assessed as a function of the monovalent cations K+, Na+, tetramethylammonium (TMA+), and Tris. Substitution of K+ or Na+ for TMA+ or Tris can alter the kinetic properties of tyrosine hydroxylase in the absence of heparin, the nature of the interaction of the enzyme with heparin and also the kinetic properties of the heparin-activated enzyme. The data suggest that monovalent cations can support unique conformational states of the enzyme.  相似文献   

17.
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1–71) and a well-folded C-terminal portion (residues 72–159). The structure of a truncated version of the regulatory domain containing residues 65–159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65–159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH.  相似文献   

18.
19.
Abstract: In the course of the purification of 14-3-3 protein (14-3-3) we found that 14-3-3 isolated from bovine forebrain activates protein kinase C (PKC), rather than the previously reported protein kinase C inhibitory activity (KCIP). We have characterized the 14-3-3 activation of PKC. The physical properties of purified PKC activator are the same as those previously reported for 14-3-3 and KCIP; i.e., (1) it is composed of subunits of molecular weight 32,000, 30,000, and 29,000; (2) it is homogeneous with respect to molecular weight, as judged by native gradient-gel electrophoresis, with a molecular weight of 53,000; and (3) it is composed of at least six isoforms when analyzed by reverse-phase HPLC. The concentration dependence of PKC activation by 14-3-3 is in the same range as that shown previously for KCIP inhibition of PKC, and as that required for 14-3-3 activation of tyrosine hydroxylase; a maximal stimulation of two- to three-fold occurs at 40–100 µg/ml. 14-3-3's activation of PKC is sensitive to α-chymotrypsin digestion but is not heat labile. Activation is specific to PKC; at least two other protein kinases, cyclic AMP- and calcium/calmodulin-dependent protein kinases, are not activated. The activation of PKC by 14-3-3 is independent of phosphatidylserine and calcium and, as such, is an alternative mechanism for the activation of PKC that obviates its translocation to membranes.  相似文献   

20.
Under phosphorylating conditions, addition of Ca2+ or cyclic AMP to the 100,000 g supernatant of purified bovine adrenal chromaffin cells increases both the incorporation of 32P into tyrosine hydroxylase and the activity of the enzyme. Combining maximally effective concentrations of each of these stimulating agents produces an additive increase in both the level of 32P incorporation into tyrosine hydroxylase and the degree of activation of the enzyme. The increased phosphorylation by Ca2+ is due to stimulation of endogenous Ca2+-dependent protein kinase activity and not inhibition of phosphoprotein phosphatases. When the chromaffin cell supernatant is subjected to diethylaminoethyl (DEAE) chromatography to remove calmodulin and phospholipids, tyrosine hydroxylase is no longer phosphorylated or activated by Ca2+; on the other hand, phosphorylation and activation of tyrosine hydroxylase by cyclic AMP are not affected. Subsequent replacement of either Ca2+ plus calmodulin or Ca2+ plus phosphatidylserine to the DEAE-fractionated cell supernatant restores the phosphorylation, but not activation of the enzyme. Reverse-phase HPLC peptide mapping of tryptic digests of tyrosine hydroxylase from the 100,000 g supernatant shows that the Ca2+-dependent phosphorylation occurs on three phosphopeptides, whereas the cyclic AMP-dependent phosphorylation occurs on one of these peptides. In the DEAE preparation, either cyclic AMP alone or Ca2+ in the presence of phosphatidylserine stimulates the phosphorylation of only a single phosphopeptide peak, the same peptide phosphorylated by cyclic AMP in the crude supernatant. In contrast, Ca2+ in the presence of calmodulin stimulates the phosphorylation of three peptides having reverse-phase HPLC retention times that are identical to peptides phosphorylated by Ca2+ addition to the crude unfractionated 100,000 g supernatant. Rechromatography of the peaks from each of the in vitro phosphorylations, either in combination with each other or in combination with each of the seven peaks generated from phosphorylation of tyrosine hydroxylase in situ, established that cyclic AMP, Ca2+/phosphatidylserine, and Ca2+/calmodulin all stimulate the phosphorylation of the same reverse-phase HPLC peptide: in situ peptide 6. Ca2+/calmodulin stimulates the phosphorylation of in situ peptides 3 and 5 as well. Thus, tyrosine hydroxylase can be phosphorylated in vitro by protein kinases endogenous to the chromaffin cell. Phosphorylation occurs on a maximum of three of the seven in situ phosphorylated sites, and all three of these sites can be phosphorylated by a Ca2+/calmodulin-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号