首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activation of the BCR, which initiates B cell activation, is triggered by Ag-induced self-aggregation and clustering of receptors at the cell surface. Although Ag-induced actin reorganization is known to be involved in BCR clustering in response to membrane-associated Ag, the underlying mechanism that links actin reorganization to BCR activation remains unknown. In this study, we show that both the stimulatory Bruton's tyrosine kinase (Btk) and the inhibitory SHIP-1 are required for efficient BCR self-aggregation. In Btk-deficient B cells, the magnitude of BCR aggregation into clusters and B cell spreading in response to an Ag-tethered lipid bilayer is drastically reduced, compared with BCR aggregation observed in wild-type B cells. In SHIP-1(-/-) B cells, although surface BCRs aggregate into microclusters, the centripetal movement and growth of BCR clusters are inhibited, and B cell spreading is increased. The persistent BCR microclusters in SHIP-1(-/-) B cells exhibit higher levels of signaling than merged BCR clusters. In contrast to the inhibition of actin remodeling in Btk-deficient B cells, actin polymerization, F-actin accumulation, and Wiskott-Aldrich symptom protein phosphorylation are enhanced in SHIP-1(-/-) B cells in a Btk-dependent manner. Thus, a balance between positive and negative signaling regulates the spatiotemporal organization of the BCR at the cell surface by controlling actin remodeling, which potentially regulates the signal transduction of the BCR. This study suggests a novel feedback loop between BCR signaling and the actin cytoskeleton.  相似文献   

3.
Actin filaments form rings and loops when > 20 mM divalent cations are added to very dilute solutions of phalloidin-stabilized filamentous actin (F-actin). Some rings consist of very long single actin filaments partially overlapping at their ends, and others are formed by small numbers of filaments associated laterally. In some cases, undulations of the rings are observed with amplitudes and dynamics similar to those of the thermal motions of single actin filaments. Lariat-shaped aggregates also co-exist with rings and rodlike bundles. These polyvalent cation-induced actin rings are analogous to the toroids of DNA formed by addition of polyvalent cations, but the much larger diameter of actin rings reflects the greater bending stiffness of F-actin. Actin rings can also be formed by addition of streptavidin to crosslink sparsely biotinylated F-actin at very low concentrations. The energy of bending in a ring, calculated from the persistence length of F-actin and the ring diameter, provides an estimate for the adhesion energy mediated by the multivalent counterions, or due to the streptavidin-biotin bonds, required to keep the ring closed.  相似文献   

4.
The formation of actin oligomers studied by analytical ultracentrifugation   总被引:2,自引:0,他引:2  
The small oligomers formed from Mg-G-actin under favorable conditions were studied by sedimentation velocity ultracentrifugation. The critical concentration of actin at pH 7.8 in the presence of 100 microM MgCl2 and 200 microM ATP was 12.5 +/- 2.8 microM. Under these conditions, about 15% of 7.5 microM Mg-actin was converted to oligomers of subunit size four to eight in 5 h at 20 degrees C. In 100 microM MgCl2 and no free ATP, the critical concentration was about 6.5 microM, and about 22% of 7.5 microM Mg-actin was converted to dimers in 80 min. There were no detectable higher oligomers or F-actin present in either case. As determined by the analysis of ATP hydrolysis, most, if not all, of the oligomer subunits contained ATP. When 28.5 microM actin was polymerized to steady state in 100 microM MgCl2 and 200 microM ATP, about 50% of the actin was present as F-actin, consistent with the critical concentration (approximately 12.5 microM), about 50% as oligomers as large as seven subunits, and only about 5% as monomers. When solutions containing oligomers were diluted the oligomers dissociated. Alternatively, when the MgCl2 concentration was raised to 1 mM, the solutions containing oligomers polymerized more rapidly than monomeric Mg-G-actin and to the same final steady state. These data are entirely consistent with the condensation-elongation model for helical polymerization proposed by Oosawa and Kasai (Oosawa, F., and Kasai, M. (1962) J. Mol. Biol. 4, 10-21) according to which, under certain conditions, substantial amounts of short linear and helical oligomers should be formed below the critical concentration and linear oligomers should coexist with monomers and F-actin at steady state.  相似文献   

5.
Wayne L. Mattice 《Biopolymers》1985,24(12):2231-2242
The intramolecular formation of multiple clusters of interacting helices has been characterized in a homopolymer. The configuration partition function permits the formation of clusters in which the number of interacting helices may be as large as the greatest integer in n/2, where n denotes the number of amino acid residues in the chain. The theoretical formulation has its origin in a recent [Mattice, W. L. & Scheraga, H. A. (1984) Biopolymers 23 , 1701–1724], tractable matrix expression for the configuration partition function for intramolecular antiparallel β-sheet formation. Reassignment of the expression for one of the n(n+3)/2 elements in the sparse statistical weight matrix, along with a simple change in notation, converts that treatment into a matrix formulation of the configuration partition function for a chain containing multiple clusters of interacting antiparallel helices. The five statistical weights used are δ, fl, w, and the Zimm-Bragg σ and s. Each tight bend that connects two interacting helices contributes a factor of δ, fl is used in the weight for larger loops between interacting helices, and w arises from helix–helix interaction. The influence of the helix–helix interaction is well illustrated by two helix–coil transitions in a chain with n = 156 and σ = 0.001. In the absence of helix–helix interaction, the transition occurs by the nucleation and subsequent elongation of a small number of helices. When helix–helix interaction is attractive, the transition can occur by a different mechanism. Formation of a single pair of interacting helices is followed by addition of new helices to the initial cluster. In the latter process, individual helices experience relatively little growth after they are formed.  相似文献   

6.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation.  相似文献   

7.
The actin homolog ParM plays a microtubule-like role in segregating DNA prior to bacterial cell division. Fluorescence and cryo-electron microscopy have shown that ParM forms filament bundles between separating DNA plasmids in vivo. Given the lack of ParM bundling proteins it remains unknown how ParM bundles form at the molecular level. Here we show using time-lapse TIRF microscopy, under in vitro molecular crowding conditions, that ParM-bundle formation consists of two distinct phases. At the onset of polymerization bundle thickness and shape are determined in the form of nuclei of short helically disordered filaments arranged in a liquid-like lattice. These nuclei then undergo an elongation phase whereby they rapidly increase in length. At steady state, ParM bundles fuse into one single large aggregate. This behavior had been predicted by theory but has not been observed for any other cytomotive biopolymer, including F-actin. We employed electron micrographs of ParM rafts, which are 2-D analogs of 3-D bundles, to identify the main molecular interfilament contacts within these suprastructures. The interface between filaments is similar for both parallel and anti-parallel orientations and the distribution of filament polarity is random within a bundle. We suggest that the interfilament interactions are not due to the interactions of specific residues but rather to long-range, counter ion mediated, electrostatic attractive forces. A randomly oriented bundle ensures that the assembly is rigid and that DNA may be captured with equal efficiency at both ends of the bundle via the ParR binding protein.  相似文献   

8.
Actin ring formation is a prerequisite for osteoclast bone resorption. Although gelsolin null osteoclasts failed to exhibit podosomes, actin ring was observed in these osteoclasts. Wiscott-Aldrich syndrome protein (WASP) was observed in the actin ring of gelsolin null osteoclast. Osteoclasts stimulated with osteopontin simulated the effects of Rho and Cdc42 in phosphatidylinositol 4,5-bisphosphate (PIP2) association with WASP as well as formation of podosomes, peripheral microfilopodia-like structures, and actin ring. To explore the potential functions of Rho and Cdc42, TAT-mediated delivery of Rho proteins into osteoclasts was performed. Although Rho and Cdc42 are required for actin ring formation, transduction of either one of the proteins alone is insufficient for this process. Addition of osteopontin to osteoclasts transduced with Cdc42Val12 or transduction of osteoclasts with both RhoVal14 and Cdc42Val12 augments the formation of WASP-Arp2/3 complex and actin ring. Neomycin, an antibiotic, blocked the effects of osteopontin or TAT-RhoVal14 on PIP2 interaction with WASP. WASP distribution was found to be cytosolic in these osteoclasts. Depletion of WASP by short interfering RNA-mediated gene silencing blocked actin polymerization as well as actin ring formation in osteoclasts. These results suggest that Rho-mediated PIP2 interaction with WASP may contribute to the activation and membrane targeting of WASP. Subsequent interaction of Cdc42 and Arp2/3 with WASP may enhance cortical actin polymerization in the process of actin ring formation in osteoclasts.  相似文献   

9.
Journal of Mathematical Biology - The formation of spatially patterned structures in biological organisms has been modelled in recent years by various mechanisms, including pairs of...  相似文献   

10.
Cardiac myofibrillar proteins, like all other intracellular proteins, are in a dynamic state of continual degradation and resynthesis. The balance between these opposing metabolic processes ultimately determines the number of functional contractile units within each cardiac muscle cell. Although alterations in myofibrillar protein degradation have been shown to contribute to cardiac growth and remodeling, the intracellular proteolytic systems responsible for degrading myofibrillar proteins to their constitutive amino acids are currently unknown. Lactacystin, a recently developed, highly specific proteasome inhibitor, was used in this study to examine the role of the proteasome in myosin heavy chain (MHC) degradation in cultured neonatal rat ventricular myocytes. Cells were treated with growth medium alone or with lactacystin (1-50 microM) for up to 48 h. Lactacystin significantly increased the total protein/DNA ratio and markedly prolonged MHC half-life. Other proteasome inhibitors, namely carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (10 microM) and N-acetyl-L-leucyl-L-leucyl-norleucinal (100 microM), were also effective in suppressing MHC degradation. Lactacystin and other proteasome inhibitors also suppressed the markedly accelerated MHC degradation associated with Ca2+ channel blockade but did not prevent the disassembly and loss of myofibrils that accompanied contractile arrest. Thus, sarcomere disassembly precedes the degradation of MHC, which is at least in part mediated by the proteasome.  相似文献   

11.
S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.  相似文献   

12.
In this paper we explored the effect of copper sulphate on the morphology of actin filaments. Actin filaments attain different shapes and structure when exposed to 2mM concentration of copper sulphate. Lateral branches were observed after 4 h of incubation while shapes like Y- and V- were formed after 8h of incubation. Rings and loops of actin filaments were formed when the concentration of copper sulphate was increased from 2 to 5 mM. Additionally, ring formation was also observed when bead tailed actin filaments were incubated with copper sulphate (5 mM). Electrostatic adhesion energy between ends of actin filaments attracted due to counterion was estimated to be 7.34 kT/μm. Divalent cation induced actin ring formation are similar to toroids of DNA but actin filaments have great bending stiffness due to large diameter of the ring formed. From these results we proposed that polyelectrolyte nature of actin filaments leads to the change in their morphology on exposure to high concentration divalent cations.  相似文献   

13.
As is well known, the light scattering intensity of F-actin solutions increases immediately upon formation of the rigor complex with subfragment-1 (S-1). We have found that after the initial rise in scattering, there is a further gradual increase in scattering (we call it "super-opalescence"). Fluorescence and electron microscopic observations of acto-S-1 solutions showed that super-opalescence results from formation of actin filament bundles once S-1 binds to F-actin. The actin bundles possessed transverse stripes with a periodicity of about 350 A, which suggested that in the bundles actin filaments are arranged in parallel register. The rate of the initial process of bundle formation (i.e. side-by-side dimerization) could be approximately estimated by measuring the initial rate of super-opalescence (V0). V0 had a maximum (V0m) at a molar ratio of S-1 to actin of 1;6-1;7, regardless of the actin concentration, pH (6-8.5), Mg2+ concentration (up to 5 mM), or ionic strength (up to 0.3 M KC1). Lower pH, higher Mg2+ concentration, and higher ionic strength increased V0m; V0 was proportional to the square of the actin concentration, regardless of the solution conditions.  相似文献   

14.
G-actin bound to deoxyribonuclease I (DNase I) is resistant to digestion by trypsin and chymotrypsin. In the absence of DNase I, G-actin is cleaved by these proteases to yield a 33 500 molecular weight core protein which is not degraded further. The major sites of proteolytic action in the amino acid sequence of actin have been identified as being adjacent to residues arginine-62 and lysine-68 for trypsin and leucine-57 for chymotrypsin. These residues are rendered inaccessible to proteases in the buffer by complex formation with DNase I. Digestion of G-actin with pronase from Streptomyces griseus yields fragmentation patterns that are similar to those observed with trypsin and chymotrypsin. This is likely to be because the specificities of the major constituents of pronase resemble those of trypsin and chymotrypsin. Again, complex formation with DNase I protects the otherwise vulnerable bonds in actin against proteolysis. Incubation with subtilisin Carlsberg leads to complete digestion of G-actin. No subtilisin-resistant core protein accumulates during the incubation. Protection of G-actin when complexed to DNase I is less than complete in this case but still is significant. This is interpreted in terms of the broad specificity of subtilisin and the observed fragmentation pattern of free G-actin when treated with subtilisin.  相似文献   

15.
The glycerophosphoinositols are diffusible phosphoinositide metabolites reported to modulate actin dynamics and tumour cell spreading. In particular, the membrane permeant glycerophosphoinositol 4-phosphate (GroPIns4P) has been shown to act at the level of the small GTPase Rac1, to induce the rapid formation of membrane ruffles. Here, we have investigated the signalling cascade involved in this process, and show that it is initiated by the activation of Src kinase. In NIH3T3 cells, exogenous addition of GroPIns4P induces activation and translocation of Rac1 and its exchange factor TIAM1 to the plasma membrane; in addition, in in-vitro assays, GroPIns4P favours the formation of a protein complex that includes Rac1 and TIAM1. Neither of these processes involves direct actions of GroPIns4P on these proteins. Thus, through the use of specific inhibitors of tyrosine kinases and phospholipase C (and by direct evaluation of kinase activities and inositol 1,4,5-trisphosphate production), we show that GroPIns4P activates Src, and as a consequence, phospholipase Cgamma and Ca(2+)/calmodulin kinase II, the last of which directly phosphorylates TIAM1 and leads to TIAM1/Rac1-dependent ruffle formation.  相似文献   

16.
The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results.  相似文献   

17.
Cooperative cluster formation in metallothionein   总被引:1,自引:0,他引:1  
An ion-exchange chromatography procedure was used to resolve apometallothionein from the metallo- form in a study of metal-thiolate cluster formation. Chromatography of metallothionein reconstituted with Cd(II), Zn(II), or Cu(I) at neutral pH on carboxymethyl-cellulose led to removal of apoprotein from a solution without effect on recovery of the metalloprotein. Analysis of the effluent revealed apparent cooperative binding of these metal ions to the protein. Addition of 1-4 mol eq Cd(II) ions led to the recovery of metallothionein with around 4 mol eq Cd bound. The yield of this form increased with increasing starting metal ion equivalency. These results were obtained with two different ion-exchange resins. The cooperativity of binding was not total, but was initially confined to the carboxyl-terminal alpha domain. The results of metal and protein yields are inconsistent with random, noninteractive binding. Similar data were obtained with Zn(II) and Cu(I) ions although Cu(I) exhibited initial cooperative binding within the amino-terminal beta domain with over 5 mol eq Cu(I) bound.  相似文献   

18.
Focal adhesions (FAs) regulate cell migration. Vinculin, with its many potential binding partners, can interconnect signals in FAs. Despite the well-characterized structure of vinculin, the molecular mechanisms underlying its action have remained unclear. Here, using vinculin mutants, we separate the vinculin head and tail regions into distinct functional domains. We show that the vinculin head regulates integrin dynamics and clustering and the tail regulates the link to the mechanotransduction force machinery. The expression of vinculin constructs with unmasked binding sites in the head and tail regions induces dramatic FA growth, which is mediated by their direct interaction with talin. This interaction leads to clustering of activated integrin and an increase in integrin residency time in FAs. Surprisingly, paxillin recruitment, induced by active vinculin constructs, occurs independently of its potential binding site in the vinculin tail. The vinculin tail, however, is responsible for the functional link of FAs to the actin cytoskeleton. We propose a new model that explains how vinculin orchestrates FAs.  相似文献   

19.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.  相似文献   

20.
K. C. Sondhi 《Genetica》1970,41(1):111-118
Experiments were designed to test the validity ofTuring's suggested pattern-forming mechanisms, which are initially capable of giving rise to only five to seven uniform structures.TheOregon-R (wild-type), mass-cultured strain ofDrosophila melanogaster was employed. Selection for the regular arrangement of microchaetac on the margin of the fourth abdominal sternite was practiced for twenty generations. In the L line, individuals with six uniformly spaced bristles were selected as parents of every generation. Due to the absence of nine bristles dividing the sternal margin uniformly, the progeny was raised in each generation in the H line from males and females with nine as equidistant bristles as possible. The whole experiment was performed at 25±0.50°C.Selection was effective in increasing the frequency of six regular bristles in the L line. But no progress in the desired direction was obtained in the H line, although the proportion of sternites with nine irregular structures was found to increase. The experimental results supportTuring's diffusion-reaction scheme of pattern formation in morphogenesis.Supported by grants GB-1388 and GB-3219 from the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号