首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid serodiagnostic methods for Toxoplasma gondii infection in cats are urgently needed for effective control of transmission routes toward human infections. In this work, 4 recombinant T. gondii antigens (SAG1, SAG2, GRA3, and GRA6) were produced and tested for the development of rapid diagnostic test (RDT). The proteins were expressed in Escherichia coli, affinity-purified, and applied onto the nitrocellulose membrane of the test strip. The recombinant SAG1 (rSAG1) showed the strongest antigenic activity and highest specificity among them. We also performed clinical evaluation of the rSAG1-loaded RDT in 182 cat sera (55 household and 127 stray cats). The kit showed 0.88 of kappa value comparing with a commercialized ELISA kit, which indicated a significant correlation between rSAG1-loaded RDT and the ELISA kit. The overall sensitivity and specificity of the RDT were 100% (23/23) and 99.4% (158/159), respectively. The rSAG1-loaded RDT is rapid, easy to use, and highly accurate. Thus, it would be a suitable diagnostic tool for rapid detection of antibodies in T. gondii-infected cats under field conditions.  相似文献   

2.

Background

Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available.

Methodology/Principal Findings

Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274–281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization.

Conclusions/Significance

The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.  相似文献   

3.
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) is a member of the genus Arterivirus within the family Arteriviridae. N and GP3 proteins are the immunodominance regions of the PRRSV viral proteins. To identify the B-cell linear antigenic epitopes within HP-PRRSV N and GP3 proteins, two monoclonal antibodies (mAbs) against N and GP3 proteins were generated and characterized, designated as 3D7 and 1F10 respectively. The mAb 3D7 recognized only HuN4-F112 not the corresponding virulent strain (HuN4-F5). It also recognized two other commercial vaccines (JXA1-R and TJM-F92), but not two other HP-PRRSV strains (HNZJJ-F1 and HLJMZ-F2). The B-cell epitope recognized by the mAb 3D7 was localized to N protein amino acids 7–33. Western blot showed that the only difference amino acid between HuN4-F112-N and HuN4-F5-N did not change the mAb 3D7 recognization to N protein. The epitope targeted by the mAb 1F10 was mapped by truncated proteins. We found a new epitope (68-76aa) can be recognized by the mAb. However, the epitope could not be recognized by the positive sera, suggesting the epitope could not induce antibody in pigs. These results should extend our understanding of the antigenic structure of the N protein and antigen-antibody reactions of the GP3 protein in different species.  相似文献   

4.
Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.  相似文献   

5.
BackgroundThe VP1 protein of duck hepatitis A virus (DHAV) is a major structural protein that induces neutralizing antibodies in ducks; however, B-cell epitopes on the VP1 protein of duck hepatitis A genotype 1 virus (DHAV-1) have not been characterized.

Methods and Results

To characterize B-cell epitopes on VP1, we used the monoclonal antibody (mAb) 2D10 against Escherichia coli-expressed VP1 of DHAV-1. In vitro, mAb 2D10 neutralized DHAV-1 virus. By using an array of overlapping 12-mer peptides, we found that mAb 2D10 recognized phages displaying peptides with the consensus motif LPAPTS. Sequence alignment showed that the epitope 173LPAPTS178 is highly conserved among the DHAV-1 genotypes. Moreover, the six amino acid peptide LPAPTS was proven to be the minimal unit of the epitope with maximal binding activity to mAb 2D10. DHAV-1–positive duck serum reacted with the epitope in dot blotting assay, revealing the importance of the six amino acids of the epitope for antibody-epitope binding. Competitive inhibition assays of mAb 2D10 binding to synthetic LPAPTS peptides and truncated VP1 protein fragments, detected by Western blotting, also verify that LPAPTS was the VP1 epitope.

Conclusions and Significance

We identified LPAPTS as a VP1-specific linear B-cell epitope recognized by the neutralizing mAb 2D10. Our findings have potential applications in the development of diagnostic techniques and epitope-based marker vaccines against DHAV-1.  相似文献   

6.
为建立H1亚型猪流感病毒抗体检测方法,扩增了H1N1亚型猪流感病毒流行株的血凝素基因HA1部分,构建原核表达载体pET30a-HA1,并转化大肠杆菌BL21表达重组蛋白。对重组蛋白包涵体进行变性、复性和Ni-NTA亲和层析纯化。以纯化后的蛋白作包被抗原,建立间接ELISA检测方法。利用该检测方法检测了2008?2009年采集的猪血清785份,阳性率为15.54%,不同省份的阳性率存在差异 (8%~47%)。以IDEXX相关试剂盒检测结果作为参照,该方法的诊断特异性达到91%,诊断敏感性达到95%。  相似文献   

7.
The U1A (or nRNP A) protein is known to play a critical role in eukaryotic pre-mRNA splicing and polyadenylation. Previous studies revealed that several mouse monoclonal antibodies (MAbs) recognized U1A as part of the U1snRNP, while MAb 12E12 was unique in that it recognized an epitope that is masked when U1A is bound to U1 RNA. In order to further characterize and understand the antigenic targets of these MAbs, we undertook fine specificity epitope mapping studies. Anti-U1A MAbs 12E12 and 10E3 each recognize unique peptides from the U1A protein. Interestingly, these MAbs recognize epitopes which have been shown to be antigenic in human autoimmune diseases. When superimposed on structures of U1A derived from crystal and NMR data, the major epitope recognized by 12E12 (amino acids 103-108) localizes to the surface of the U1A molecule. The 12E12 epitope is immediately adjacent to a helix which probably reacts to U1 RNA binding by undergoing a conformational change. This modification of structure effectively masks the 12E12 epitope, thus preventing binding of the monoclonal to U1A/U1 RNA complexes. These findings suggest that the structure of the U1A protein may be different when not part of the U1snRNP.  相似文献   

8.
Angiotensin I-converting enzyme (ACE, peptidyl dipeptidase, EC 3.4.15.2) is a key enzyme in cardiovascular pathophysiology. A wide spectrum of monoclonal antibodies to different epitopes on the N and C domains of human ACE has been used to study different aspects of ACE biology. In this study we characterized the monoclonal antibody (mAb) 5F1, developed against the N domain of human ACE, which recognizes both the catalytically active and the denatured forms of ACE. The epitope for mAb 5F1 was defined using species cross-reactivity, synthetic peptide (PepScan technology) and phage display library screening, Western blotting, site-directed mutagenesis, and protein modeling. The epitope for mAb 5F1 shows no overlap with the epitopes of seven other mAbs to the N domain described previously and is localized on the other side of the N domain globule. The binding of mAb 5F1 to ACE is carbohydrate-dependent and increased significantly as a result of altered glycosylation after treatment with alpha-glucosidase-1 inhibitor, N-butyldeoxynojirimycin (NB-DNJ), or neuraminidase. Out of 17 species tested, mAb 5F1 showed strict primate ACE specificity. In addition, mAb 5F1 recognized human ACE in Western blots and on paraffin-embedded sections. The sequential part of the epitope for mAb 5F1 is created by the N-terminal part of the N domain, between residues 1 and 141. A conformational region of the epitope was also identified, including the residues around the glycan attached to Asn117, which explains the sensitivity to changes in glycosylation state, and another stretch localized around the motif 454TPPSRYN460. Site-directed mutagensis and inhibition assays revealed that mAb 5F1 inhibits ACE activity at high concentrations due to binding of residues on both sides of the active site cleft, thus supporting a hinge-bending mechanism for substrate binding of ACE.  相似文献   

9.

Background

Active serologic surveillance of H5N1 highly pathogenic avian influenza (HPAI) virus in humans and poultry is critical to control this disease. However, the need for a robust, sensitive and specific serologic test for the rapid detection of antibodies to H5N1 viruses has not been met.

Methodology/Principal Findings

Previously, we reported a universal epitope (CNTKCQTP) in H5 hemagglutinin (HA) that is 100% conserved in H5N1 human isolates and 96.9% in avian isolates. Here, we describe a peptide ELISA to detect antibodies to H5N1 virus by using synthetic peptide that comprises the amino acid sequence of this highly conserved and antigenic epitope as the capture antigen. The sensitivity and specificity of the peptide ELISA were evaluated using experimental chicken antisera to H5N1 viruses from divergent clades and other subtype influenza viruses, as well as human serum samples from patients infected with H5N1 or seasonal influenza viruses. The peptide ELISA results were compared with hemagglutinin inhibition (HI), and immunofluorescence assay and immunodot blot that utilize recombinant HA1 as the capture antigen. The peptide ELISA detected antibodies to H5N1 in immunized animals or convalescent human sera whereas some degree of cross-reactivity was observed in HI, immunofluorescence assay and immunodot blot. Antibodies to other influenza subtypes tested negative in the peptide-ELISA.

Conclusion/Significance

The peptide-ELISA based on the highly conserved and antigenic H5 epitope (CNTKCQTP) provides sensitive and highly specific detection of antibodies to H5N1 influenza viruses. This study highlighted the use of synthetic peptide as a capture antigen in rapid detection of antibodies to H5N1 in human and animal sera that is robust, simple and cost effective and is particularly beneficial for developing countries and rural areas.  相似文献   

10.
Accurate and timely diagnoses are central to H5N1 infection control. Here we describe the cloning and expression of the HA1 protein of the A/Vietnam/1203/04 strain in a bacterial system to generate mono-/polyclonal antibodies. All of the eight generated monoclonal antibodies recognized the same linear epitope on the top globular region of the HA structure—a highly conserved epitope among all circulating H5N1 clades identified by amino acid alignment. Results from immunofluorescence staining and Western blotting indicate that all monoclonal antibodies interacted with a denatured form of HA proteins, while the resultant polyclonal antibodies recognized both denatured and native HA proteins on H5N1 reverse-genetics (RG) viruses. Results from flow cytometry and microneutralization assays indicate that the polyclonal antibodies blocked viral binding and neutralized H5N1-RG viruses. Our results may prove useful to establishing future H5N1 mono-and polyclonal antibodies, and perhaps contribute to the development of an alternative H5N1 vaccine.  相似文献   

11.
Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes.  相似文献   

12.
13.
Jin M  Lang J  Shen ZQ  Chen ZL  Qiu ZG  Wang XW  Li JW 《PloS one》2012,7(2):e31352
To detect food E. coli O157:H7 contamination rapidly and accurately, it is essential to prepare high specific monoclonal antibodies (mAbs) against the pathogen. Cyclophosphamide (Cy)-mediated subtractive immunization strategy was performed in mice to generate mAbs that react with E. coli O157:H7, but not with other affiliated bacteria. Specificity of 19 mAbs was evaluated by ELISA and/or dot-immunogold filtration assay (DIGFA). Immunogloubin typing, affinity and binding antigens of 5 selected mAbs were also analysed. MAbs 1D8, 4A7, 5A2 were found to have high reactivity with E. coli O157:H7 and no cross-reactivity with 80 other strains of bacteria including Salmonella sp., Shigella sp., Proteus sp., Yersinia enterocolitica, Staphylococcus aureus, Klebsiella pneumoniae, Citrobacter freundii and other non-E. coli O157:H7 enteric bacteria. Their ascetic titers reached 1:10(6) with E. coli O157:H7 and affinity constants ranged from 1.57 × 10(10) to 2.79 × 10(10) L/mol. The antigens recognized by them were different localized proteins. Furthermore, immune-colloidal gold probe coated with mAb 5A2 could specifically distinguish minced beef contaminated by E. coli O157:H7 from 84 other bacterial contaminations. The Cy-mediated subtractive immunization procedure coupled with hybridoma technology is a rapid and efficient approach to prepare discriminatory mAbs for detection of E. coli O157:H7 contamination in food.  相似文献   

14.
A recently derived intra-MHC recombinant mouse strain, the C3H.KBR was found to produce a surprisingly high titer of anti-Qa antibodies when immunized with C3H.SW lymphocytes. By using this immunization combination, a panel of 10 mAb with specificity for determinants encoded by the Q region was produced. These reagents were analyzed for strain distribution by microcytotoxicity, immunofluorescence, and flow cytometry assays. Competitive inhibition analyses, performed by using fluorescein-labeled antibodies and normal spleen cells, defined at least three epitope clusters, or groups of spatially related determinants, detected by this panel. One epitope cluster was unique to this new series of antibodies in that it was not detected with seven previously described anti-Qa mAb. These antibodies also have been analyzed for reactivity with products of isolated Q-region genes by using transfected cell lines. The data indicate that the Q6d, Q7d, and Q10d genes encode determinants reactive with one or more mAb and that two of the three epitope clusters defined with normal cells map to the N and/or C2 domains of these molecules. The third epitope cluster is presumed to map to the C2 domain. These reagents should be useful in determining the number of Q-region genes expressed and in analyses of Q gene expression in subpopulations of normal cells, in transfected cell lines, and during differentiation and ontogeny.  相似文献   

15.
Monoclonal antibodies (mAbs) were used to examine the interrelationships between morphologically identical flagellar filaments from Escherichia coli H serotype strains belonging to morphotype E. Serotype specific mAbs recognised epitopes exposed on the surface of flagellar filaments from H1, H7, H23, H49 and H51, but were inaccessible to immunolabelling in H45. Several mAbs which recognised conserved epitopes were also examined. mAb 7-56.1 recognised an epitope present in all morphotype E flagellins but not expressed on the filament surface. Similarly, mAb 1-5.1 recognised an internal epitope shared only by serotypes H1 and H12. Serotype H23 expressed a surface epitope which was present but not surface exposed in H7, H1 and H45 filaments.  相似文献   

16.
Pandemic influenza by the swine-origin influenza virus (H1N1 2009) has attracted considerable concern worldwide. A convenient and accurate diagnostic approach that can be deployed at the point of care, such as in a doctor's office or at an airport, is critical for disease control. Here we report the development of a silicon-based microfluidic system for subtype differentiation of the novel H1N1 2009 strain vs. the seasonal influenza A (FluA) strain. The proposed system included two functional modules: a multiplexed PCR module for amplification of nucleic acid targets and a multiplexed silicon nanowire (SiNW) module for sequence determination. The PCR module consisted of a microfluidic PCR chamber and an electrical controller to perform a multiplexed protocol that simultaneously enriched specific segments of both H1N1 and FluA strains (if present), with 10(4)-10(5) amplification efficiency. The PCR amplicon was subsequently denatured and transferred to the SiNW sensing module for a label-free, multiplexed detection. A control SiNW was implemented, for the first time, in order to eliminate background interference. The detection module demonstrated a 10× change in the magnitude of differential current when the target DNA was injected. Overall, the system achieved a sensitivity of 20-30 fg/μl for H1N1 and seasonal FluA nucleic acids in a 10 μl sample. The low sample consumption, high sensitivity and high specificity render it a potential point-of-care (POC) platform to help doctors reach a yes/no decision for infectious diseases.  相似文献   

17.
一种新型H5N1禽流感病毒血凝素抗原快速检测试剂的建立   总被引:2,自引:1,他引:2  
利用5株广谱特异性抗H5亚型血凝素单克隆抗体和酶联免疫渗滤技术成功地建立了一种适于现场检测H5亚型禽流感病毒血凝素蛋白的抗原快速检测试剂H5-HA(Ag)Dot-ELISA。该试剂对41株代表当前亚洲地区流行的各种遗传变异亚系H5N1禽流感病毒检测均为阳性,对多数毒株的分析灵敏度优于0.1个血凝滴度(HA titer),其中部分优于0.01个血凝滴度;比较该试剂与早期开发的同类ELISA试剂,发现前者对后者未能检出的H5N1新变异株检测均为阳性;利用该试剂和商品化Directigen Flu A(BD)试剂检测两株H5N1病毒株,提示前者灵敏度高于后者;该试剂对一株H5N1病毒的检测灵敏度与标准RT-PCR相当;该试剂对24株非H5亚型病毒检测均为阴性,显示出良好特异性。以上结果提示,此研究建立的H5N1病毒抗原快速检测试剂在H5禽流感现场检测上具有较好的应用前景。  相似文献   

18.
Highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype has given rise to serious damage in poultry industries in Asia. The virus has expanded its geographical range to Europe and Africa, posing a great risk to human health as well. For the control of avian influenza, a rapid diagnosis by detecting the causative virus and identifying its subtype is essential. In the present study, a rapid diagnosis kit combining immunochromatography with enzyme immunoassay which detects the H5 HA antigen of influenza A virus was developed using newly established anti-H5 HA monoclonal antibodies. The present kit specifically detected all of the H5 influenza viruses tested, and did not react with the other HA subtypes. H5 HA antigens were detected from swabs and tissue homogenates of chickens infected with HPAI virus strain A/chicken/Yamaguchi/7/04 (H5N1) from 2 days post inoculation. The kit showed enough sensitivity and specificity for the rapid diagnosis of HPAI.  相似文献   

19.
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Toxoplasma gondii is an apicomplexan parasite with a broad host range of most warm-blooded mammals including humans, of which one-thirds of the human population has been infected worldwide which can cause congenital defects, abortion, and neonatal complications. Here, we developed a rapid diagnostic test (RDT) for T. gondii infection. Antigenic N-terminal half of the major surface antigen (SAG1) was linked with intrinsically unstructured domain (IUD) of dense granule protein 2 (GRA2). The recombinant GST-GRA2-SAG1A protein was successfully expressed and purified as 51 kDa of molecular weight. Furthermore, antigenicity and solubility of the rGST-GRA2-SAG1A protein were significantly increased. The overall specificity and sensitivity of GST-GRA2-SAG1A loaded RDT (TgRDT) were estimated as 100% and 97.1% by comparing with ELISA result which uses T. gondii whole cell lysates as the antigen. The TgRDT tested with Uganda people sera for field trial and showed 31.9% of seroprevalence against T. gondii antibody. The TgRDT is proved to be a kit for rapid and easy to use with high accuracy, which would be a suitable serodiagnostic tool for toxoplasmosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号