首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. In vivo treatment of London APP mice, expressing the WT beta-secretase site, with these inhibitors resulted in substantial improvement in memory deficit assessed by the Morris water maze test. After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.  相似文献   

2.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

3.
Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity   总被引:2,自引:0,他引:2  
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.  相似文献   

4.
Hook V  Kindy M  Hook G 《Biological chemistry》2007,388(2):247-252
Abnormal accumulation of neurotoxic beta-amyloid peptides (Abeta) in brain represents a key factor in the progression of Alzheimer's disease (AD). Identification of small molecules that effectively reduce brain levels of Abeta is important for development of Abeta-lowering agents for AD. In this study, we demonstrate that in vivo Abeta levels in brain are significantly reduced by the cysteine protease inhibitor E64d and the related CA074Me inhibitor, which inhibits cathepsin B. Direct infusion of these inhibitors into brains of guinea pigs resulted in reduced levels of Abeta by 50-70% after 30 days of treatment. Substantial decreases in Abeta also occurred after only 7 days of inhibitor infusion, with a reduction in both Abeta40 and Abeta42 peptide forms. A prominent decrease in Abeta peptides was observed in brain synaptosomal nerve terminal preparations after CA074Me treatment. Analyses of APP-derived proteolytic fragments showed that CA074Me reduced brain levels of the CTFbeta fragment, and increased amounts of the sAPPalpha fragment. These results suggest that CA074Me inhibits Abeta production by modulating APP processing. Animals appeared healthy after treatment with these inhibitors. These results, showing highly effective in vivo decreases in brain Abeta levels by these cysteine protease inhibitors, indicate the feasibility of using related compounds for lowering Abeta in AD.  相似文献   

5.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

6.
The regulated secretory pathway of neurons is the major source of extracellular A beta that accumulates in Alzheimer's disease (AD). Extracellular A beta secreted from that pathway is generated by beta-secretase processing of amyloid precursor protein (APP). Previously, cysteine protease activity was demonstrated as the major beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells. In this study, the representative cysteine protease activity in these secretory vesicles was purified and identified as cathepsin B by peptide sequencing. Immunoelectron microscopy demonstrated colocalization of cathepsin B with A beta in these vesicles. The selective cathepsin B inhibitor, CA074, blocked the conversion of endogenous APP to A beta in isolated regulated secretory vesicles. In chromaffin cells, CA074Me (a cell permeable form of CA074) reduced by about 50% the extracellular A beta released by the regulated secretory pathway, but CA074Me had no effect on A beta released by the constitutive pathway. Furthermore, CA074Me inhibited processing of APP into the COOH-terminal beta-secretase-like cleavage product. These results provide evidence for cathepsin B as a candidate beta-secretase in regulated secretory vesicles of neuronal chromaffin cells. These findings implicate cathepsin B as beta-secretase in the regulated secretory pathway of brain neurons, suggesting that inhibitors of cathepsin B may be considered as therapeutic agents to reduce A beta in AD.  相似文献   

7.
This highlight article describes three Alzheimer's disease (AD) studies presented at the 5th General Meeting of the International Proteolysis Society that address enzymatic mechanisms for producing neurotoxic beta-amyloid (Abeta) peptides. One group described the poor kinetics of BACE 1 for cleaving the wild-type (WT) beta-secretase site of APP found in most AD patients. They showed that cathepsin D displays BACE 1-like specificity and cathepsin D is 280-fold more abundant in human brain than BACE 1. Nevertheless, as BACE 1 and cathepsin D show poor activity towards the WT beta-secretase site, they suggested continuing the search for additional beta-secretase(s). The second group reported cathepsin B as an alternative beta-secretase possessing excellent kinetic efficiency and specificity for the WT beta-secretase site. Significantly, inhibitors of cathepsin B improved memory, with reduced amyloid plaques and decreased Abeta(40/42) in brains of AD animal models expressing amyloid precursor protein containing the WT beta-secretase site. The third group addressed isoaspartate and pyroglutamate (pGlu) posttranslational modifications of Abeta. Results showed that cathepsin B, but not BACE 1, efficiently cleaves the WT beta-secretase isoaspartate site. Furthermore, cyclization of N-terminal Glu by glutaminyl cyclase generates highly amyloidogenic pGluAbeta(3-40/42). These presentations suggest cathepsin B and glutaminyl cyclase as potential new AD therapeutic targets.  相似文献   

8.
Amyloid plaques, composed of the amyloid beta-protein (Abeta), are hallmark neuropathological lesions in Alzheimer disease (AD) brain. Abeta fulfills a central role in AD pathogenesis, and reduction of Abeta levels should prove beneficial for AD treatment. Abeta generation is initiated by proteolysis of amyloid precursor protein (APP) by the beta-secretase enzyme BACE1. Bace1 knockout (Bace1(-/-)) mice have validated BACE1 as the authentic beta-secretase in vivo. BACE1 is essential for Abeta generation and represents a suitable drug target for AD therapy, especially because this enzyme is up-regulated in AD. However, although initial data indicated that Bace1(-/-) mice lack an overt phenotype, the BACE1-mediated processing of APP and other substrates may be important for specific biological processes. In this minireview, topics range from the initial identification of BACE1 to the fundamental knowledge gaps that remain in our understanding of this protease. We address pertinent questions such as putative causes of BACE1 elevation in AD and discuss why, nine years since the identification of BACE1, treatments that address the underlying pathological mechanisms of AD are still lacking.  相似文献   

9.
Zou L  Wang Z  Shen L  Bao GB  Wang T  Kang JH  Pei G 《Cell research》2007,17(5):389-401
Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (APP). The aspartic protease, β -site APP cleavage enzyme (BACE), has been identified as the main β-secretase in brain but the regulation of its activity is largely unclear. Here, we demonstrate that both BACE activity and subsequent Aβ production are enhanced after stimulation of receptor tyrosine kinases (RTKs), such as the receptors for epidermal growth factor (EGF) and nerve growth factor (NGF), in cultured cells as well as in mouse hippocampus. Furthermore, stimulation of RTKs also induces BACE internalization into endosomes and Golgi apparatus. This enhancement of BACE activity and A β production upon RTK activation could be specifically inhibited by Src family kinase inhibitors and by depletion of endogenous c-Src with RNAi, and could be mimicked by over-expressed c-Src. Moreover, blockage of BACE internalization by a dominant negative form of Rab5 also abolished the enhancement of BACE activity and Aβ production, indicating the requirement of BACE internalization for the enhanced activity. Taken together, our study presents evidence that BACE activity and Aβ production are under the regulation of RTKs and this is achieved via RTK-stimulated BACE internalization, and suggests that an aberration of such regulation might contribute to pathogenic Aβ production.  相似文献   

10.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major component of the plaques, amyloid beta peptide (Abeta), is generated from amyloid precursor protein (APP) by beta- and gamma-secretase-mediated cleavage. Because beta-secretase/beta-site APP cleaving enzyme 1 (BACE1) knockout mice produce much less Abeta and grow normally, a beta-secretase inhibitor is thought to be one of the most attractive targets for the development of therapeutic interventions for AD without apparent side-effects. Here, we report the in vivo inhibitory effects of a novel beta-secretase inhibitor, KMI-429, a transition-state mimic, which effectively inhibits beta-secretase activity in cultured cells in a dose-dependent manner. We injected KMI-429 into the hippocampus of APP transgenic mice. KMI-429 significantly reduced Abeta production in vivo in the soluble fraction compared with vehicle, but the level of Abeta in the insoluble fraction was unaffected. In contrast, an intrahippocampal injection of KMI-429 in wild-type mice remarkably reduced Abeta production in both the soluble and insoluble fractions. Our results indicate that the beta-secretase inhibitor KMI-429 is a promising candidate for the treatment of AD.  相似文献   

11.
Generation and accumulation of the amyloid beta peptide (Abeta) following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 (Beta-site APP Cleaving Enzyme-1, beta-secretase) and gamma-secretase is a main causal factor of Alzheimer's disease (AD). Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of AD. In this study, we discovered that natural flavonoids act as non-peptidic BACE-1 inhibitors and potently inhibit BACE-1 activity and reduce the level of secreted Abeta in primary cortical neurons. In addition, we demonstrated the calculated docking poses of flavonoids to BACE-1 and revealed the interactions of flavonoids with the BACE-1 catalytic center. We firstly revealed novel pharmacophore features of flavonoids by using cell-free, cell-based and in silico docking studies. These results contribute to the development of new BACE-1 inhibitors for the treatment of AD.  相似文献   

12.
Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.  相似文献   

13.
Mounting evidence indicates that aberrant production and aggregation of amyloid beta-peptide (Abeta)-(1-42) play a central role in the pathogenesis of Alzheimer disease (AD). Abeta is produced when amyloid precursor protein (APP) is cleaved by beta- and gamma-secretases at the N and C termini of the Abeta domain, respectively. The beta-secretase is membrane-bound aspartyl protease, most commonly known as BACE1. Because BACE1 cleaves APP at the N terminus of the Abeta domain, it catalyzes the first step in Abeta generation. PAR-4 (prostate apoptosis response-4) is a leucine zipper protein that was initially identified to be associated with neuronal degeneration and aberrant Abeta production in models of AD. We now report that the C-terminal domain of PAR-4 is necessary for forming a complex with the cytosolic tail of BACE1 in co-immunoprecipitation assays and in vitro pull-down experiments. Overexpression of PAR-4 significantly increased, whereas silencing of PAR-4 expression by RNA interference significantly decreased, beta-secretase cleavage of APP. These results suggest that PAR-4 may be directly involved in regulating the APP cleavage activity of BACE1. Because the increased BACE1 activity observed in AD patients does not seem to arise from genetic mutations or polymorphisms in BACE1, the identification of PAR-4 as an endogenous regulator of BACE1 activity may have significant implications for developing novel therapeutic strategies for AD.  相似文献   

14.
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.  相似文献   

15.
16.
beta-Secretase, a beta-site amyloid precursor protein (APP) cleaving enzyme (BACE), participates in the secretion of beta-amyloid peptides (Abeta), the major components of the toxic amyloid plaques found in the brains of patients with Alzheimer's disease (AD). According to the amyloid hypothesis, accumulation of Abeta is the primary influence driving AD pathogenesis. Lowering of Abeta secretion can be achieved by decreasing BACE activity rather than by down-regulation of the APP substrate protein. Therefore, beta-secretase is a primary target for anti-amyloid therapeutic drug design. Several approaches have been undertaken to find an effective inhibitor of human beta-secretase activity, mostly in the field of peptidomimetic, non-cleavable substrate analogues. This review describes strategies targeting BACE mRNA recognition and its down-regulation based on the antisense action of small inhibitory nucleic acids (siNAs). These include antisense oligonucleotides, catalytic nucleic acids - ribozymes and deoxyribozymes - as well as small interfering RNAs (siRNAs). While antisense oligonucleotides were first used to identify an aspartyl protease with beta-secretase activity, all the strategies now demonstrate that siNAs are able to inhibit BACE gene expression in a sequence-specific manner, measured both at the level of its mRNA and at the level of protein. Moreover, knock-down of BACE reduces the intra- and extracellular population of Abeta40 and Abeta42 peptides. An anti-amyloid effect of siNAs is observed in a wide spectrum of cell lines as well as in primary cortical neurons. Thus targeting BACE with small inhibitory nucleic acids may be beneficial for the treatment of Alzheimer's disease and for future drug design.  相似文献   

17.
Several lines of evidence suggest that polymerization of the amyloid beta-peptide (Abeta) into amyloid plaques is a pathogenic event in Alzheimer's disease (AD). Abeta is produced from the amyloid precursor protein as the result of sequential proteolytic cleavages by beta-secretase and gamma-secretase, and it has been suggested that these enzymes could be targets for treatment of AD. gamma-Secretase is an aspartyl protease complex, containing at least four transmembrane proteins. Studies in cell lines have shown that gamma-secretase is partially localized to lipid rafts, which are detergent-resistant membrane microdomains enriched in cholesterol and sphingolipids. Here, we studied gamma-secretase in detergent-resistant membranes (DRMs) prepared from human brain. DRMs prepared in the mild detergent CHAPSO and isolated by sucrose gradient centrifugation were enriched in gamma-secretase components and activity. The DRM fraction was subjected to size-exclusion chromatography in CHAPSO, and all of the gamma-secretase components and a lipid raft marker were found in the void volume (> 2000 kDa). Co-immunoprecipitation studies further supported the notion that the gamma-secretase components are associated even at high concentrations of CHAPSO. Preparations from rat brain gave similar results and showed a postmortem time-dependent decline in gamma-secretase activity, suggesting that DRMs from fresh rat brain may be useful for gamma-secretase activity studies. Finally, confocal microscopy showed co-localization of gamma-secretase components and a lipid raft marker in thin sections of human brain. We conclude that the active gamma-secretase complex is localized to lipid rafts in human brain.  相似文献   

18.
The amyloid beta-protein (Abeta), implicated in the pathogenesis of Alzheimer's disease (AD), is a proteolytic metabolite generated by the sequential action of beta- and gamma-secretases on the amyloid precursor protein (APP). The two main forms of Abeta are 40- and 42-amino acid C-terminal variants, Abeta40 and Abeta42. We recently described a difluoro ketone peptidomimetic (1) that blocks Abeta production at the gamma-secretase level [Wolfe, M. S., et al. (1998) J. Med. Chem. 41, 6-9]. Although designed to inhibit Abeta42 production, 1 also effectively blocked Abeta40 formation. Various amino acid changes in 1 still resulted in inhibition of Abeta40 and Abeta42 production, suggesting relatively loose sequence specificity by gamma-secretase. The alcohol counterparts of selected difluoro ketones also lowered Abeta levels, indicating that the ketone carbonyl is not essential for activity and suggesting that these compounds inhibit an aspartyl protease. Selected compounds inhibited the aspartyl protease cathepsin D but not the cysteine protease calpain, corroborating previous suggestions that gamma-secretase is an aspartyl protease with some properties similar to those of cathepsin D. Also, since the gamma-secretase cleavage sites on APP are within the transmembrane region, we consider the hypothesis that this region binds to gamma-secretase as an alpha-helix and discuss the implications of this model for the mechanism of certain forms of hereditary AD.  相似文献   

19.
beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.  相似文献   

20.
Alzheimer's disease (AD) is the most common neurodegenerative disease associated with aging. One important pathologic feature of AD is the formation of extracellular senile plaques in the brain, whose major components are small peptides called beta-amyloid (Abeta) that are derived from beta-amyloid precursor protein (APP) through sequential cleavages by beta-secretase and gamma-secretase. Because of the critical role of Abeta in the pathogenesis of AD, unraveling the cellular and molecular events underlying APP/Abeta metabolism has been and remains, of paramount importance to AD research. In this article we will focus on the regulation of APP metabolism leading to Abeta generation. We will review current knowledge of the secretases (alpha-, beta-, and gamma-secretases) involved in APP processing and various molecular and cellular mechanisms underlying intracellular trafficking of APP, which is a highly regulated process and whose disturbance has direct impacts on the production of Abeta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号