首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Plasmid-borne copper resistance genes from copper-resistant strains of Xanthomonas campestris pv. vesicatoria from California, Florida, and Oklahoma shared structural similarities. A strain of X. campestris pv. campestris also contained plasmid-borne copper resistance genes similar to the resistance genes from X. campestris pv. vesicatoria. Furthermore, a region of the copper resistance genes from X. campestris pv. vesicatoria 07882 hybridized with copA, the first gene of the copper resistance operon (cop) of Pseudomonas syringae pv. tomato. A copper-inducible protein of similar size to CopA was detected by Western blot (immunoblot) analysis from the wild-type strain 07882 and from the cloned copper resistance genes of 07882 introduced into a copper-sensitive strain of X. campestris pv. vesicatoria. A low level of hybridization was observed with chromosomal DNA from other xanthomonads when the copper resistance genes from strain 07882 were used as probes.  相似文献   

2.
A higher understanding of genetic and genomic bases of partial resistance in plants and their diversity regarding pathogen variability is required for a more durable management of resistance genetic factors in sustainable cropping systems. In this study, we investigated the diversity of genetic factors involved in partial resistance to Aphanomyces euteiches, a very damaging pathogen on pea and alfalfa, in Medicago truncatula. A mapping population of 178 recombinant inbred lines, from the cross F83005.5 (susceptible) and DZA045.5 (resistant), was used to identify quantitative trait loci for resistance to four A. euteiches reference strains belonging to the four main pathotypes currently known on pea and alfalfa. A major broad-spectrum genomic region, previously named AER1, was localized to a reduced 440 kb interval on chromosome 3 and was involved in complete or partial resistance, depending on the A. euteiches strain. We also identified 21 additive and/or epistatic genomic regions specific to one or two strains, several of them being anchored to the M. truncatula physical map. These results show that, in M. truncatula, a complex network of genetic loci controls partial resistance to different pea and alfalfa pathotypes of A. euteiches, suggesting a diversity of molecular mechanisms underlying partial resistance.  相似文献   

3.
The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar ‘Bruno’ carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar ‘Jumbo’ possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar ‘Rollo’, in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.  相似文献   

4.
Rapid and reliable assessment of Acinetobacter baumannii resistance to quinolones was successfully achieved through pyrosequencing of the gyrA and parC quinolone-resistance determining regions. A strong correlation was found between quinolone resistance and mutations in gyrA codon 83 and/or in the parC gene (codons 80 or 84). Absence of QRDR mutations was associated with susceptibility to quinolones.  相似文献   

5.
Verticillium longisporum is a major threat to production of oilseed rape (Brassica napus) in Europe. The aim of the study was to develop new markers and obtain insights into putative mechanisms and pathways involved in the resistance reaction. A genetic approach was used to identify quantitative trait loci (QTL) for V. longisporum resistance and metabolic traits potentially influencing resistance in a B. napus mapping population. Resistance to V. longisporum was mapped in a doubled haploid (DH) population from a cross between the partially resistant winter oilseed rape variety Express 617 and a resistant resynthesized B. napus line, R53. One major resistance QTL contributed by R53 was identified on chromosome C5, while a further, minor QTL contributed by Express 617 was detected on chromosome C1. Markers flanking the QTL also significantly correlated with V. longisporum resistance in four further DH populations derived from crosses between elite oilseed rape cultivars and other resynthesized B. napus lines originating from genetically and geographically diverse brassica A and C genome donors. The tightly-linked markers developed enable the combination of favorable alleles for novel resistance loci from resynthesized B. napus materials with existing resistance loci from commercial breeding lines. HPLC analysis of hypocotyls from infected DH lines revealed that concentrations of a number of phenylpropanoids were correlated with V. longisporum resistance. QTL for some of these phenylpropanoids were also found to co-localize with the QTL for V. longisporum resistance. Genes from the phenylpropanoid pathway are suggested as candidates for V. longisporum resistance.  相似文献   

6.
Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.  相似文献   

7.
Resistance to the protein synthesis inhibitor trichodermin in Saccharomyces cerevisiae has been studied. A single recessive nuclear gene was responsible for resistance. The resistance locus, tcm1 was found to be closely linked (1 centimorgan) to the locus pet 17 on the right arm of chromosome XV. The mutation to trichodermin resistance conferred resistance to other 12,13-epoxytrichothecenes and to the structurally unrelated antibiotic anisomycin.  相似文献   

8.
The effect of soil temperature on the expression of resistance in several common bean lines carrying resistance to root-knot nematodes (Meloidogyne spp.) was studied under controlled temperatures in temperature tank and growth chamber conditions. Resistance to M. javanica and M. incognita race 1 in bean lines A315, A328, A445, G1805, and G2618 was stable at 24-30 C. However, there was a significant increase in reproduction of M. javanica on A315, A328, and A445 when temperature was increased from 26 to 30 C. This increase did not reflect a change from a resistant to a susceptible reaction or classification. Resistance in A315 is derived from G1805, whereas resistance in A328 and A445 is derived from G2618. Alabama No. 1, PI 165426, and PI 165435, with resistance to M. incognita race 2, were heat stressed at temperatures above 27 C. Resistance to M. incognita race 2 in Alabama No. 1 and PI 165435 was lost at 30 C, but PI 165426 supported low reproduction of M. incognita race 2 at all temperatures. Poor root development at 30 C may have been responsible, in part, for the poor development of M. incognita race 2 on PI 165426.  相似文献   

9.
There is concern that ships’ ballasting operations may disseminate Vibrio cholerae to ports throughout the world. Given evidence that the bacterium is indeed transported by ships, we isolated pandemic serotypes O1 and O139 from ballast tanks and characterized them with respect to antibiotic resistance and virulence genes ctxA and tcpA. We carried out concurrent studies with V. cholerae isolated from coastal waters. Of 284 isolates, 30 were serotype O1 and 59 were serotype O139. These serotypes were overrepresented in ballast tanks relative to the coastal waters sampled. All locations, whether coastal waters or ballast tanks, yielded samples from which serotype O1, O139, or both were isolated. There were three groups among the 62 isolates for which antibiotic characterization was conclusive: those exhibiting β-lactamase activity and resistance to at least one of the 12 antibiotics tested; those negative for β-lactamase but having antibiotic resistance; those negative for β-lactamase and registering no antibiotic resistance. When present, antibiotic resistance in nearly all cases was to ampicillin; resistance to multiple antibiotics was uncommon. PCR assays revealed that none of the isolates contained the ctxA gene and only two isolates, one O139 and one O1, contained the tcpA gene; both isolates originated from ballast water. These results support the bacteriological regulations proposed by the International Maritime Association for discharged ballast water.  相似文献   

10.
The extreme resistance to Turnip mosaic virus observed in the Chinese cabbage (Brassica rapa) line, BP8407, is monogenic and recessive. Bulked segregant analysis was carried out to identify simple sequence repeat and Indel markers linked to this recessive resistance gene, termed recessive Turnip mosaic virus resistance 02 (retr02). Mapping of PCR-specific Indel markers on 239 individuals of a BP8407 × Ji Zao Chun F2 population, located this resistance gene to a 0.9-cM interval between two Indel markers (BrID10694 and BrID101309) and in scaffold000060 or scaffold000104 on chromosome A04 of the B. rapa genome. Eleven eukaryotic initiation factor 4E (eIF4E) and 14 eukaryotic initiation factor 4G (eIF4G) genes are predicted in the B. rapa genome. A candidate gene, Bra035393 on scaffold000104, was predicted within the mapped resistance locus. The gene encodes the eIF(iso)4E protein. Bra035393 was sequenced in BP8407 and Ji Zao Chun. A polymorphism (A/G) was found in exon 3 between BP8407 and Ji Zao Chun. This gene was analysed in four resistant and three susceptible lines. A correlation was observed between the amino acid substitution (Gly/Asp) in the eIF(iso)4E protein and resistance/susceptibility. eIF(iso)4E has been shown previously to interact with the TuMV genome-linked protein, VPg.  相似文献   

11.
12.
The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut.  相似文献   

13.
Escherichia coli is zoonotic bacteria and the emergence of antimicrobial-resistant strains becomes a critical issue in both human and animal health globally. This study was therefore aimed to investigate the plasmid-mediated resistance in E. coli strains isolated from healthy and diarrheic sheep and goats. A total of 234 fecal samples were obtained from 157 sheep (99 healthy and 58 diarrheic) and 77 goats (32 healthy and 45 diarrheic) for the isolation and identification of E. coli. Plasmid DNA was extracted using the alkaline lysis method. Phenotypic antibiotic susceptibility profiles were determined against the three classes of antimicrobials, which resistance is mediated by plasmids (Cephalosporins, Fluoroquinolone, and Aminoglycosides) using the disc-diffusion method. The frequency of plasmid-mediated resistance genes was investigated by PCR. A total of 159 E. coli strains harbored plasmids. The isolates antibiogram showed different patterns of resistance in both healthy and diarrheic animals. A total of (82; 51.5%) E. coli strains were multidrug-resistant. rmtB gene was detected in all Aminoglycoside-resistant E. coli, and the ESBL-producing E. coli possessed different CTX-M genes. Similarly, fluoroquinolone-resistant E. coli possessed different qnr genes. On the analysis of the gyrB gene sequence of fluoroquinolone-resistant E. coli, multiple point mutations were revealed. In conclusion, a high prevalence of E. coli with high resistance patterns to antimicrobials was revealed in the current study, in addition to a wide distribution of their resistance determinants. These findings highlight the importance of sheep and goats as reservoirs for the dissemination of MDR E. coli and resistance gene horizontal transfer.  相似文献   

14.
Insensitive acetylcholinesterase (AChE) was determined to be involved in an EPN-resistant (ER) strain and a contaminated susceptible (CS) strain of diamondback moth (DBM, Plutella xylostella L.), as estimated by AChE inhibition assay using DDVP as a inhibitor in a nondenaturing electrophoresis gel. The ER strain exhibited very high AChE insensitivity, high resistance ratio, and two point mutations (G324A, A298S) in ace1-type AChE gene (Pxace1). The CS strain showed low AChE insensitivity, low resistance ratio, and it has only one point mutation (G324A). These findings suggest that the A298S mutation, along with reported G324A mutation (Baek et al, 2005), can be important in the development of organophosphate resistance. These results also suggest that the A298S mutation could be a good candidate for a molecular diagnosis marker for resistance monitoring. Three molecular diagnosis methods (Quantitative Sequencing; QS, PCR amplification of specific alleles; PASA and restriction fragment length polymorphism; RFLP) were developed which successfully detected specific resistance associated point mutations. Seven local population DBMs were surveyed and showed high insecticide resistance levels and a A298S mutation in Pxace1. These methods can be used to monitor the resistance allele in field population of DBMs and resistance management strategy.  相似文献   

15.
燕麦属不同倍性种质资源抗旱性状评价及筛选   总被引:4,自引:0,他引:4  
盆栽控水试验测定了燕麦属13个二倍体、7个四倍体和5个六倍体物种共106份材料的主要抗旱性状表现,用GGEbiplot软件的主成分分析法比较了各性状之间的关系及其对抗旱鉴定的贡献,综合评价燕麦属野生资源在燕麦抗旱育种中的潜能和利用价值。结果表明,干旱处理后植株的死亡率和萎蔫程度与可溶性糖含量的增加幅度呈显著正相关关系(r>0.5, P<0.05),而胁迫后植株的丙二醛(MDA)含量和植株相对电导率与抗旱能力也明显相关(r>0.5, P<0.01)。综合考虑抗旱的相关形态和生理指标,筛选到二倍体Avena atlanticaA. wiestii A. strigosa,四倍体种A. murphyi,以及六倍体栽培燕麦A. sativa和普通野燕麦A. fatua的部分居群具有优良的综合抗旱性。基于A. wiestii,A. strigosaA. murphyi与栽培燕麦较近的亲缘关系,其抗旱性可通过远缘杂交的方式在普通燕麦育种中加以利用。而对于具有明显抗旱优势的野生二倍体材料A. atlantica,则可通过克隆其抗旱基因进而遗传转化的方法将其应用于栽培燕麦的抗旱性改良。同时该研究表明燕麦的抗旱性不具有种属和分布区域的特异性,因此其抗旱性并非简单的由基因或环境决定,在确定抗旱材料时需要对个体进行全面的抗旱性评价和鉴定,以期在利用抗旱材料或通过克隆抗旱基因来改善干旱地区生态环境的实践中能更准确和有效。  相似文献   

16.
Effect of lipid materials on heat resistance of bacterial spores   总被引:9,自引:2,他引:7       下载免费PDF全文
The apparent heat resistance of spores of Bacillus megaterium, B. subtilis, B. cereus, B. stearothermophilus, and Clostridium botulinum type E in lipids was investigated and compared with the resistance of the spores in phosphate buffer solution. The most pronounced increase in heat resistance was noted for B. subtilis and C. botulinum type E, the increase varying with the type of lipid used. A high water content of the lipids used as heating menstruum lowered the heat resistance of the spores. Possible explanations for the high heat resistance of spores in lipids are discussed.  相似文献   

17.
《Journal of Asia》1999,2(2):113-119
Susceptibility of the spiraea aphid (Aphis citricola van der Goot) to several classes of insecticides revealed regional variation. Four field-collected A. citricola populations have developed resistance to several classes of insecticides, including pyrethroids, organophosphates, and carbamates. Of the 15 insecticides tested four insecticides (deltamethrin, clopyrifos, omethoate and carbaryl) showed the relative resistance ratio (RRR) values of 10 or above, against four field-collected populations, whereas the other 11 insecticides had RRR values above 2. There were no significant differences in esterase activities among the field-collected populations. Esterase activity was generally homogeneous in the Yeasan-collected population, but was more heterogeneous in the populations collected from Andong, Kunwi and Suwon. Glutathione S-transferase (GST) activity in the Andong-and Yeasan-collected populations was higher than that in the other populations. More heterogeneous pattern of esterase activity and higher activity of GST in field populations of A. citricola would be due to multiple resistance mechanism. Fortunately, the levels of resistance in four field-collected populations examined are still increasing. Therefore, careful selective use of insecticides through both continued resistance monitoring and resistance mechanism study can be warranted to extend the effective life of insecticides for controlling A. citricola that was already resistant to various insecticides.  相似文献   

18.
Stout DG 《Plant physiology》1988,86(1):283-287
Stem and electrode electric impedance at 14 frequencies were monitored during cold acclimation of alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.). Cold acclimation significantly increased high frequency (e.g. 1.11 megahertz) resistance and reactance but not low frequency (49 hertz) resistance and reactance of both species. High frequency resistance of living stems was equivalent to the average resistance at all frequencies of dead stems and the resistance of dead stems (y) was related to stem water content (x):y = 9.28 − 4.11x + 0.47x2, R = 0.92. The low-high frequency (49 hertz/1.11 megahertz) resistance ratio decreased during cold acclimation. A time constant believed to be a function of membrane resistance and capacitance was not affected by cold acclimation.  相似文献   

19.
Hessian fly (HF), Mayetiola destructor, is an important pest of wheat (Triticum aestivum L.) worldwide. Because it has multiple biotypes that are virulent to different wheat HF resistance genes, pyramiding multiple resistance genes in a cultivar can improve resistance durability, and finding DNA markers tightly linked to these genes is essential to this process. This study identified quantitative trait loci (QTLs) for Hessian fly resistance (HFR) in the wheat cultivar ‘Clark’ and tightly linked DNA markers for the QTLs. A linkage map was constructed with single nucleotide polymorphism and simple sequence repeat markers using a population of recombinant inbred lines (RILs) derived from the cross ‘Ning7840’ × ‘Clark’ by single-seed descent. Two QTLs associated with resistance to fly biotype GP were identified on chromosomes 6B and 1A, with the resistance alleles contributed from ‘Clark’. The QTL on 6B flanked by loci Xsnp921 and Xsnp2745 explained about 37.2 % of the phenotypic variation, and the QTL on 1A was flanked by Xgwm33 and Xsnp5150 and accounted for 13.3 % of phenotypic variation for HFR. The QTL on 6B has not been reported before and represents a novel wheat gene with resistance to HF, thus, it is designated H34. A significant positive epistasis was detected between the two QTLs that accounted for about 9.5 % of the mean phenotypic variation and increased HFR by 0.16. Our results indicated that different QTLs may contribute different degrees of resistance in a cultivar and that epistasis may play an important role in HFR.  相似文献   

20.
A high level of chloroquine resistance was developed in the rodent malaria parasite, Plasmodium chabaudi. This resistance was stable and its inheritance was shown to be multigenic; intermediate levels of resistance were obtained from a cross between highly resistant and sensitive parasites. Chloroquine resistance was shown to segregate independently of pyrimethamine resistance and enzyme markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号