首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Multiple regulation of proenkephalin gene expression by protein kinase C   总被引:13,自引:0,他引:13  
In the present study we investigated the role of protein kinase C (Ca2+/phospholipid-dependent enzyme)-mediated processes in the regulation of proenkephalin gene expression in primary cultures of bovine adrenal chromaffin cells. Activators of protein kinase C such as 1-oleoyl-2-acetylglycerol, mezerein, and the phorbol esters phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-didecanoate induced a time-dependent increase in proenkephalin mRNA levels, whereas the inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate had no effect. The increase in phorbol ester-induced proenkephalin mRNA was potentiated by low concentrations of the Ca2+ ionophore A23187, suggesting an interaction between protein kinase- and Ca2+-mediated processes in the regulation of proenkephalin mRNA. The phorbol ester-induced stimulation does not appear to be mediated by an interaction with the cAMP-generating system or increases in Ca2+ uptake. However, when proenkephalin mRNA levels were stimulated by KCl (10 mM) and the dihydropyridine BayK8644, PMA exhibited an inhibitory effect on proenkephalin mRNA, which was detectable at a 10-fold lower concentration of PMA than the stimulatory effect. This inhibitory effect appears to be mediated by an inhibition of Ca2+ entry through voltage-dependent Ca2+ channels, as suggested by 45Ca2+ uptake experiments. Thus, the net effect of PMA depends on and varies with the state of voltage-dependent Ca2+ channel activity. A third mode of action by protein kinase C to modulate proenkephalin gene expression is by interaction with the phosphatidylinositol second messenger system. Stimulation of phosphoinositide hydrolysis and proenkephalin mRNA by histaminic H1-receptor activation was inhibited by low concentrations of PMA. We suggest that protein kinase C may act as a positive and negative regulator of proenkephalin gene expression by interacting with at least three receptor-coupled second messenger systems.  相似文献   

5.
6.
The effects of acute and extended ethanol exposure on N-methyl-D-aspartate- and kainate-induced currents were examined electrophysiologically in Xenopus oocytes expressing rat hippocampal mRNA. Ethanol inhibited responses stimulated by low and high concentrations of N-methyl-D-aspartate to a similar degree. However, responses produced by low or high concentrations of kainate were differentially inhibited by ethanol. Low kainate concentration responses were much more sensitive to ethanol than high kainate concentrations (e.g., 50 mM ethanol inhibited 12.5 microM kainate responses by 45% compared to 15% inhibition of 400 microM kainate responses). In oocytes cultured in 100 mM ethanol for 1-5 days, the ethanol inhibition of maximum N-methyl-D-aspartate and kainate responses was not different from that in non-ethanol-exposed oocytes. Ethanol treatment, however, selectively decreased the ethanol sensitivity of low kainate concentration responses. Currents stimulated by N-methyl-D-aspartate or kainate were not different between control and ethanol-treated oocytes, indicating that ethanol exposure did not interfere with channel expression. The selective actions of acute and extended ethanol exposure on low kainate responses may indicate selective actions of ethanol on subtypes of kainate receptors expressed in oocytes.  相似文献   

7.
8.
9.
10.
11.
探究木香烃内酯体外对乙醇诱导肝细胞损伤及脂肪变性的影响。建立乙醇导致人LO2肝细胞损伤模型,检测木香烃内酯对细胞活力、ALT和AST释放、脂质生成、脂质调控因子表达及AMPK活性的影响。发现乙醇在高于100 mM浓度时显著抑制肝细胞活力,据此将100 mM浓度的乙醇作为体外刺激肝细胞的实验浓度。木香烃内酯能够逆转乙醇对肝细胞活力的抑制作用,并降低乙醇导致的肝细胞ALT、AST的释放。木香烃内酯能够降低乙醇诱导的肝细胞脂质成分集聚,降低细胞内TG、TC水平。此外,乙醇导致肝细胞中重要的脂质调控转录因子SREBP-1c的表达显著上调,使PPARα的表达显著下调;而木香烃内酯能够减少SREBP-1c的表达并增加PPARα的表达。进一步发现,木香烃内酯显著促进肝细胞中AMPK的磷酸化,且AMPK抑制剂BML-275能够显著削弱木香烃内脂对SREBP-1c和PPARα的调控作用。综上,木香烃内酯体外显著改善乙醇诱导的肝细胞损伤与脂肪变性,该作用与激活AMPK进而调控SREBP-1c与PPARα的表达有关。本研究为将木香烃内酯作为抗酒精性脂肪肝候选药物研究提供实验依据。  相似文献   

12.
13.
14.
15.
The expression of chromosomal proteins HMG 14 and HMG 17 during proliferation and differentiation into the osteoblast and monocyte phenotypes was studied. Cellular levels of HMG 14 and HMG 1 7 mRNA were assayed in primary cultures of calvarial-derived rat osteoblasts under conditions that (1) support complete expression of the mature osteocytic phenotype and development of a bone tissue-like organization; and (2) where development of osteocytic phenotypic properties are both delayed and reduced in extent of expression. HMG 14 and HMG 17 are preferentially expressed in proliferating osteoblasts and decline to basal levels post-proliferatively at the onset of extracellular matrix mineralization. In contrast, under conditions that are not conducive to extracellular matrix mineralization, HMG 14 is maximally expressed following the downregulation of proliferation. Consistent with previous reports by Bustin and co-workers [Crippa et al., 1990], HMG 14 and HMG 17 are expressed in proliferating HL-60 promyelocytic leukemia cells and downregulated post-proliferatively following phorbol ester-induced monocytic differentiation. However, differentiation into the monocyte phenotype is accompanied by reinitiation of HMG 17 gene expression. The results indicate that the levels of HMG 14 and HMG 17 mRNA are selectively down-regulated during differentiation.  相似文献   

16.
17.
18.
Among the large number of immediate early genes, nuclear proto-oncogenes of the Fos and Jun families, have been postulated to be involved in the long-term effects of several growth factors on cell differentiation and/or multiplication. Since adrenal cell differentiated functions appear to be regulated by specific hormones and growth factors, the effects of these factors on proto-oncogene mRNA levels were analysed in bovine adrenal fasciculata cells (BAC) in culture. Corticotropin (ACTH) and insulin-like growth factor I increased c-fos and jun-B mRNA, but had no effect on c-jun mRNA and these early changes were associated with a later increase in BAC specific function [ACTH receptors, cytochrome P 450 17) and 3β-hydroxysteroid dehydrogenase (3β-HSD)] and an enhanced steroidogenic responsiveness to both ACTH and angiotensin-II (A-II). On the other hand, A-II increased the three proto-oncogene (c-fos, c-jun and jun-B) mRNAs, induced a decreased of P 450 17 and 3β-HSD and caused a marked homologous and heterologous (ACTH) densitization. Transforming growth factor β1 which only increased jun-B mRNA, markedly reduced BAC differentiated functions and the steroidogenic responsiveness to both ACTH and A-II. Thus, it is postulated that the proto-oncoproteins encoded by the immediate early genes may play a role in the long-term effects of peptide hormones and growth factors on BAC differentiated functions.  相似文献   

19.
Chronic exposure of primary neuronal cultures to ethanol has been shown to potentiate N-methyl-D-aspartate (NMDA) receptor-mediated processes, such as nitric oxide (NO) formation and excitotoxicity. In the present study, we compared the effects of acute ethanol and acetaldehyde on NMDA receptor-mediated excitotoxicity and NO production in primary cultures of rat cortical neurons. The delayed cell death induced by NMDA (300 mM, 25 min) was evaluated by morphological examination and by measuring the release of the cytotoxic indicator, lactate dehydrogenase, in the culture media 24 hours after the NMDA exposure. The accumulation of nitrite, as an index of NO production, was also measured 24 hours after NMDA treatment. NMDA caused a dose-dependent cell death and nitrite accumulation, both effects were blocked by pretreatment of MK-801 (100 microM). Acute exposure to ethanol (1-1000 mM) or acetaldehyde (0.1-1 mM) for 35 minutes did not affect neuronal viability in the following 24-hr period. However, acute exposure to acetaldehyde (> or =10 mM) was neurotoxic. Neither ethanol nor acetaldehyde changed basal nitrite levels in the culture media. Acute ethanol (50-400 mM, 10 min) given before the NMDA treatment (25 min) resulted in a concentration-dependent suppression of the delayed cell death. The NMDA-induced NO production was, however, not affected by ethanol. Neither the NMDA excitotoxicity nor NO production was affected by acute ethanol given after NMDA treatment. Acute acetaldehyde (0.01-0.5 mM, 10 min) given before or after NMDA treatment had no effect on delayed NMDA neurotoxicity and NO production. Our data suggest that acute exposure to ethanol is not neurotoxic and is even protective against delayed NMDA-excitotoxicity when given before but not after NMDA treatment. Neither NO nor metabolism of ethanol to acetaldehyde is required for ethanol-mediated suppression of NMDA excititoxicity. Acetaldehyde, on the other hand, is toxic by itself at low concentrations (> or =10 mM). Furthermore, acute exposure to non-toxic concentrations of acetaldehyde could not protect cortical neurons against NMDA-induced excitotoxicity.  相似文献   

20.
The effects of ethanol on inducible prostaglandin production in RAW macrophages were investigated. Indomethacin (1 microM) or cycloheximide (1 microM) abolished prostaglandin E2 (PGE2) production induced by lipopolysaccharide (LPS, 1 microg/ml). Ethanol at concentrations from 100 mM to 600 mM concentration-dependently inhibited inducible PGE2 production, while ethanol only at higher concentrations (400 mM or more) showed cytotoxity to the cells. Cyclooxygenase-2 (COX-2) activity, estimated by transformation of exogenous arachidonic acid into PGE2, was not affected by ethanol (100-400 mM). LPS-induced expression of COX-2 mRNA was inhibited by ethanol (50-400 mM). On the other hand, protein expression of COX-2 by LPS was significantly increased by ethanol (100-400 mM). Ethanol alone at concentrations up to 600 mM did not induce expression of COX-2 protein. In a medium containing arachidonic acid (1 microM), ethanol at a low concentration (100 mM) did not significantly affect LPS-induced PGE2 production. These results suggest that ethanol shows diverse effects on the pathway of inducible PGE2 production in macrophages. Finally, ethanol may suppress utilization of arachidonic acid, resulting in reduction of inducible PGE2 production. Further study is needed to elucidate the mechanism of dissociation of ethanol effects on protein and mRNA expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号