首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.  相似文献   

2.
Males and females of almost all organisms exhibit sexual differences in body size, a phenomenon called sexual size dimorphism (SSD). How the sexes evolve to be different sizes, despite sharing the same genes that control growth and development, and hence a common genetic architecture, has remained elusive. Here, we show that the genetic architecture (heritabilities and genetic correlations) of the physiological mechanism that regulates size during the last stage of larval development of a moth, differs between the sexes, and thus probably facilitates, rather than hinders, the evolution of SSD. We further show that the endocrine system plays a critical role in generating SSD. Our results demonstrate that knowledge of the genetic architecture underlying the physiological process during development that ultimately produces SSD in adults can elucidate how males and females of organisms evolve to be of different sizes.  相似文献   

3.
Abstract Male intrasexual selection in haplorhine primates has previously been shown to increase male size and to a lesser degree also female size. I address the following questions: (1) why does female size increase when the selection is on males, and (2) why does female size not increase to the same extent as that of males. The potential for correlational selection on females through increased resource competition was analysed with independent contrasts analyses. No such effect was found, nor did matched pairs comparisons reveal females to increase in size because of selection to bear larger male offspring. Instead further matched pairs analyses revealed higher female postpartum investment, as indicated by a longer lactation period, in more sexually selected species, also after correcting for body weight. Concerning the second question, independent contrast analyses showed that large size has had negative effects on female reproductive rate across the primate order. Matched‐pairs analyses on haplorhines revealed that females of species in more polygynous clades have lower reproductive rates than females of species in less polygynous clades. This is also true after the effects of body weight are removed. These results, both when correcting for body weight and when not, suggest that sexual selection has shifted female size from one favouring female lifetime fecundity to one favouring male success in competition. This depicts antagonistic selection pressures on female size and a trade‐off for females between the ecologically optimal size of their foremothers and the larger size that made their forefathers successful.  相似文献   

4.
One of the goals of physical anthropology and primatology is to understand how primate social systems influence the evolution of sexually selected traits. Howler monkeys provide a good model for studying sexual selection due to differences in social systems between related species. Here, we examine data from the sister howler monkey species Alouatta palliata and A. pigra inhabiting southeastern Mexico and northern Guatemala. We use a resampling approach to analyze differences in sexual dimorphism of body and canine size. In addition, we compare testes size as a way of gauging the intensity of sperm competition in both species. Morphometric data were collected from wild-caught individuals, including body mass and length, and dental data were obtained from casts from wild individuals and from museum specimens. Although A. pigra individuals are larger than their A. palliata counterparts, we find that both species exhibit similar levels of sexual dimorphism for all of the variables considered. Testicular volume results indicate that A. palliata male testes are on average twice as large as those of A. pigra males, suggesting more intense sperm competition in the former species. Our study shows that A. pigra is not highly sexually dimorphic as was once thought, and testes size differences suggest the need for a clearer understanding of howler monkey social systems.  相似文献   

5.
Sexual size dimorphism (SSD) arises when the net effects of natural and sexual selection on body size differ between the sexes. Quantitative SSD variation between taxa is common, but directional intraspecific SSD reversals are rare. We combined micro‐ and macroevolutionary approaches to study geographic SSD variation in closely related black scavenger flies. Common garden experiments revealed stark intra‐ and interspecific variation: Sepsis biflexuosa is monomorphic across the Holarctic, while S. cynipsea (only in Europe) consistently exhibits female‐biased SSD. Interestingly, S. neocynipsea displays contrasting SSD in Europe (females larger) and North America (males larger), a pattern opposite to the geographic reversal in SSD of S. punctum documented in a previous study. In accordance with the differential equilibrium model for the evolution of SSD, the intensity of sexual selection on male size varied between continents (weaker in Europe), whereas fecundity selection on female body size did not. Subsequent comparative analyses of 49 taxa documented at least six independent origins of male‐biased SSD in Sepsidae, which is likely caused by sexual selection on male size and mediated by bimaturism. Therefore, reversals in SSD and the associated changes in larval development might be much more common and rapid and less constrained than currently assumed.  相似文献   

6.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

7.
In many animal groups, sexual size dimorphism tends to be more pronounced in species with large body size. Similarly, in a previous cross-cultural analysis, male and female stature in humans were shown to be positively allometrically related, indicating a similar relationship where populations with larger stature were more dimorphic. In this study, we re-examine the hypothesis of an allometric relationship between the sexes using phylogenetic methodology. First, however, we tested whether there exist phylogenetic signals in male and female stature. Data on mean stature from 124 human populations was gathered from the literature. A phylogenetic test showed that male and female stature were significantly associated with phylogeny. These results indicate that comparative methods that to some degree incorporate genetic relatedness between populations are crucial when analyzing human size evolution in a cross-cultural context. Further, neither non-phylogenetic nor phylogenetic analyses revealed any allometric relationship between male and female stature. Thus, we found no support for the idea that sexual dimorphism increases with increasing stature in humans.  相似文献   

8.
Predictions associated with opposing selection generating minimum variance in basal metabolic rate (BMR) in mammals at a constrained body mass (CBM; 358 g) were tested. The CBM is presumed to be associated with energetic constraints linked to predation and variable resources at intermediate sizes on a logarithmic mass scale. Opposing selection is thought to occur in response to energetic constraints associated with predation and unpredictable resources. As body size approaches and exceeds the CBM, mammals face increasing risks of predation and daily energy requirements. Fast running speeds may require high BMRs, but unpredictable and low resources may select for low BMRs, which also reduce foraging time and distances and thus predation risks. If these two selection forces oppose each other persistently, minimum BMR variance may result. However, extreme BMR outliers at and close to the CBM should be indicative of unbalanced selection and predator avoidance alternatives (escapers vs. defenders), and may therefore provide indirect support for opposing selection. It was confirmed that body armor in defenders evolves at and above the CBM, and armored mammals had significantly lower BMRs than their nonarmored counterparts. However, analyses comparing the BMR of escapers--the fastest nonarmored runners (Lagomorpha)--with similar-sized counterparts were inconclusive and were confounded by limb morphology associated with speed optimization. These analyses suggest that the risks and costs of predation and the speed limitations of the plantigrade foot may constrain the evolution of large body sizes in plantigrade mammals.  相似文献   

9.
Patterns of sexual size dimorphism and body size in calanoid copepods are examined. We hypothesize that favorable conditions for development will result in large body size and high sexual size dimorphism among populations of a given species and that differences in this allometric relationship among species is governed by the male's role in insemination. We confirm that there is a greater advantage to large female size, normally the larger sex, when compared to males, hence leading to selection for developmental patterns favoring high size dimorphism. Individuals from populations of four centropagid copepod species were measured; other sizes were obtained from published sources. In the four species we examined, the relationships between prosome length and both clutch size and the ability to produce multiple clutches with one insemination were determined. Results show a trend toward hyperallometry in all centropagid species examined: sexual size dimorphism increases with increasing size. Large females produce larger clutches and more additional clutches on one insemination. That hyperallometry is not observed in diaptomid copepods may result from the greater role the male plays in reproduction. Males are needed for each clutch produced, hence the selective pressure to be larger is greater than that in the centropagidae.  相似文献   

10.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

11.
Bergmann's and Rensch's rules describe common large-scale patterns of body size variation, but their underlying causes remain elusive. Bergmann's rule states that organisms are larger at higher latitudes (or in colder climates). Rensch's rule states that male body size varies (or evolutionarily diverges) more than female body size among species, resulting in slopes greater than one when male size is regressed on female size. We use published studies of sex-specific latitudinal body size clines in vertebrates and invertebrates to investigate patterns equivalent to Rensch's rule among populations within species and to evaluate their possible relation to Bergmann's rule. Consistent with previous studies, we found a continuum of Bergmann (larger at higher latitudes: 58 species) and converse Bergmann body size clines (larger at lower latitudes: 40 species). Ignoring latitude, male size was more variable than female size in only 55 of 98 species, suggesting that intraspecific variation in sexual size dimorphism does not generally conform to Rensch's rule. In contrast, in a significant majority of species (66 of 98) male latitudinal body size clines were steeper than those of females. This pattern is consistent with a latitudinal version of Rensch's rule, and suggests that some factor that varies systematically with latitude is responsible for producing Rensch's rule among populations within species. Identifying the underlying mechanisms will require studies quantifying latitudinal variation in sex-specific natural and sexual selection on body size.  相似文献   

12.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

13.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

14.
The effects of a series of ecological and size factors on the degree of sexual dimorphism in body weight and canine size were studied among subsets of 70 primate species. Variation in body-weight dimorphism can be almost entirely attributed to body weight (83% of variance R2 of weight dimorphism). Much smaller amounts of the variation can be attributed to mating system (R2 =6.8%,polygynous species being more dimorphic than monogamous ones) and diet (R2 = 2.5%,frugivorous species being more dimorphic than folivorous ones). Habitat (arboreal vs. terrestrial) and activity rhythm (nocturnal vs. diurnal) have only an indirect effect on weight dimorphism. Variation in canine-size dimorphism can be explained in terms of canine size (R2 =49%),activity rhythm (R2 = 20%,diurnal species being more dimorphic than nocturnal ones), and mating system (R2 = 10%).Habitat and diet do not play a significant role in canine-size dimorphism. The unexpectedly high contribution of size to sexual dimorphism coupled with the observation of increased sexual dimorphism with increased size leads us to formulate a new selection model for the evolution of sexual dimorphism. We suggest that if there is selection for size increase, whatever its cause, directional selection in both males and females will lead to an increase in sexual dimorphism based on differences in genetic variance between the sexes. Sexual selection, resource division between the sexes, or lopsided reproductive selection need not play a role in such a model.  相似文献   

15.
The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex‐specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient.  相似文献   

16.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

17.
11 , Evolution 34 : 292–305) equations for predicting the evolution of sexual size dimorphism (SSD) through frequency‐dependent sexual selection, and frequency‐independent natural selection, were tested against results obtained from a stochastic genetic simulation model. The SSD evolved faster than predicted, due to temporary increases in the genetic variance brought about by directional selection. Predictions for the magnitude of SSD at equilibrium were very accurate for weak sexual selection. With stronger sexual selection the total response was greater than predicted. Large changes in SSD can occur without significant long‐term change in the genetic correlation between the sexes. Our results suggest that genetic correlations constrain both the short‐term and long‐term evolution of SSD less than predicted by the Lande model.  相似文献   

18.
Body size is a key feature of organisms and varies continuously because of the effects of natural selection on the size-dependency of resource acquisition and mortality rates. This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large-scale temporal and spatial) perspective. Because of the importance of understanding the proximate determinants of adult size, it commences with a brief summary of the physiological mechanisms underlying adult body size and its variation, based mostly on findings for the model species Drosophila melanogaster and Manduca sexta . Variation in nutrition and temperature have variable effects on critical weight, the interval to cessation of growth (or terminal growth period) and growth rates, so influencing final adult size. Ontogenetic and phylogenetic variation in size, compensatory growth, scaling at the intra- and interspecific levels, sexual size dimorphism, and body size optimisation are then reviewed in light of their influences on individual and species body size frequency distributions. Explicit attention is given to evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place, and to temporal ecological trends such as variation in size with succession and size-selectivity during the invasion process. Large-scale spatial variation in size at the intraspecific, interspecific and assemblage levels is considered, with special attention being given to the mechanisms proposed to underlie clinal variation in adult body size. Finally, areas particularly in need of additional research are identified.  相似文献   

19.
In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.  相似文献   

20.
We use standardized independent contrasts (SICs) to elucidate the effect of ecology and mating systems on morphological radiation in grouse. The analysis of SICs for 38 skeletal measurements from 20 taxa, showed that changes in mating system had a significant effect on body size of both sexes. Sexual size dimorphism in grouse is consistent with Rensch's rule; the slope of the regression of male vs. female size SICs was 1.4, significantly >1. Changes in habitat were associated with accelerated rates of evolution of body proportions. SICs for male and female scores of size independent factors were directly proportional to each other (slope = 1), indicating extreme similarities between male and female ecology. Females, however, were better adapted to longer, more energy efficient flight than males. Size independent morphological differences among grouse are adaptive and are related to the differences in habitat and foraging behaviour among the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号